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TMEMIG6F IS A DISTINCT TYPE OF Ca?*-ACTIVATED CI~ CHANNEL
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Fig. 5. Induction of Ca®*-activated currents by
overexpression of TMEM16F, but not TMEM 16K,
in HEK293T cells. A: representative whole cell 2nA
currents after application of 5 wM ionomycin (at
bars) in mock (top)-, TMEMI16F (middle)-, and 4 min
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applied. B: steady-state I-V relationships for TMEM16K .
ionomycin-induced currents measured in lonomycin
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fected cells. Each data point represents the
means *= SE (vertical bar) of 5-9 experi- 1nA
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Katz equation yielded a permeability ratio, Paspartate/ Pci, 0of 0.47 £
0.08 (n = 9). Next, we investigated the anion selectivity of the
TMEMI16F-dependent channel. Substitution of extracellular C1™
with I, Br—, and F~ shifted the reversal potential from 4.7 = 0.2
to —10.9 = 0.6, —2.7 = 0.9, and 14.0 = 3.2 mV (n = 5-6),
respectively (Fig. 6F). The anion selectivity sequence for the
TMEMI16F channel, determined from the reversal potentials, was
therefore I” > Br~ > ClI~ > F~ (Fig. 6G).

Since niflumic acid (NFA) has been reported to block Ca?™-
activated TMEM16A and TMEMI16B Cl~ channels (5, 22, 26,
37), we examined the effect of NFA on TMEMI6F-dependent
CI™ currents. Application of NFA at 300 wM significantly inhib-
ited TMEM16F-dependent C1™ currents activated by increasing
the intracellular free Ca®" concentration to 100 uM (Fig. 7, A and

B). The NFA effect on TMEMI16F currents was reversible (data
not shown) and concentration dependent (Fig. 7C). The estimated
half-maximal inhibitory concentration (ICsp) was 213 pM.
Ca?" sensitivity of the TMEM16F CI~ channel is low. To assess
the sensitivity of TMEMI16F CI™ channel activation to Ca?™, we
applied different concentrations of Ca>* in the pipette (intracel-
Iular) solution. As shown in Fig. 8A, TMEMI16F Cl~ currents
increased with rising intracellular free Ca>* in a concentration-
dependent manner and showed essentially no changes in time-
dependent activation at positive voltages or deactivation at nega-
tive voltages. The peak steady-state /-V relationship exhibited
strong outward rectification at free Ca>* concentrations of 10 to
100 uM (Fig. 8B). The concentration-response curve for outward
TMEMI6F currents observed at +100 mV shows that channel
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Fig. 6. Anion selectivity of Ca?*-activated cur-
rents in TMEM 16F-transfected HEK293T cells.
TMEMI6F-dependent currents were measured
after steady-state activation by intracellular ap-
plication of 100 wM free Ca>". A: representative
current responses to step pulses from —100 to
+100 mV in 20-mV increments before (left) and
after (right) the replacement of extracellular C1™
with aspartate ™. B: representative shift of rever-
sal potential caused by replacement of extracel-
lular CI™ with aspartate”. Reversal potential
was measured using 100-ms ramp pulses
from +100 mV to —100 mV. C: summary of
the reversal potential shift induced by re-
placement of extracellular C1~ with aspar-
tate”. Each column represents the means *
SE (vertical bar) of 9 experiments. D: repre-
sentative effect of replacement of extracellular
Na* with N-methyl-D-glucamine (NMDG™) on
the reversal potential. £: summary of the rever-
sal potential observed by replacement of
extracellular Na* with NMDG™. Each col-
umn represents the means * SE (vertical
bar) of 4 experiments. F: representative
shifts of the reversal potential caused by
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activation requires a rather high concentration of intracellular free
Ca®*, with a half-maximal concentration (ECso) of 9.6 = 0.4 uM
(n = 4-23; Fig. 8C). Endogenous CaCC induced by increase in
intracellular Ca®" concentration in mock-transfected cells exhib-
ited similar current profiles (Fig. 84, last trace) and an indistin-
guishable concentration-dependence with ECsg of 8.7 = 1.4 pM
(n = 3-14; Fig. 8C), although the maximal current amplitude was
much smaller than that in TMEM 16F-transfected cells.

Since Ca®*/calmodulin-dependent protein kinase I (CaMKII)
was reported to regulate Ca>*-dependent activation of endog-
enous CaCC (2, 11), we investigated effects of KN-93, a

substitution of extracellular CI~ with 1,
Br, and F~. G: anion selectivity (Px/Pc1) of
Ca?*-activated TMEMI16F-dependent cur-
rents. Each column represents the means *
SE (vertical bar) of 5-6 experiments.

Control NMDG-CI

F- Br- -

membrane-permeable CaMKII inhibitor, on TMEMI16F CI1™
channels. Even when cells were treated with KN-93 added to
the bathing solution at 10 uM, TMEMI16F CI™ currents acti-
vated by raising the intracellular free Ca>* concentration to
100 wM were not essentially affected (Fig. 9).

DISCUSSION

TMEMI16F and TMEMI16K do not underlie VSOR activ-
ity. Based on the observations that knockdown of endogen-
ous TMEM16 proteins including TMEM16A, TMEMI6F,
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Fig. 7. Niflumic acid (NFA) sensitivity of Ca?*-
activated TMEMI16F-dependent Cl~ currents.
CI™ currents were measured in TMEM 16F-trans-
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TMEMI16H, and TMEM16J with corresponding siRNAs de-
creased swelling-activated outwardly rectifying C1™ currents in
HEK?293 cells, it was proposed that some TMEM16 proteins
are crucial components of the VSOR hetero-oligomer (1). In

A

the present study, we observed the actual robust endogenous
expression of TMEM16F and TMEM16K in three types of
human epithelial cells exhibiting high functional VSOR activ-
ity (Fig. 1). We demonstrated, however, that siRNA-induced

3 uM 6 uM 10 uM
_—_——— é

Fig. 8. Ca?" sensitivity of TMEMI6F- 30 uM 100 uM Mock
dependent CI~ currents. A: representative cur- 100 pM
rent responses to step pulses from —100 to
+100 mV in 20-mV increments at different
concentrations of intracellular free Ca>™ (3, 6,
10, 30, and 100 pM) in TMEMIG6F-trans-
fected HEK293T cells and at 100 pM in
mock-transfected cells. B: steady-state /-V re- 4 nA
lationships for TMEMI16F-dependent Cl~
currents at different intracellular free Ca®* 200 ms
concentrations. C: concentration-response
curves for intracellular Ca®>* effects on Cl~ B C
currents recorded at +100 mV in mock- and o 1uM ™ 1200 -
TMEM 16F-transfected cells. Each data point H 3 O Mock
represents the means = SE (vertical bar) of A 3uM < +1000 m TMEM16F
3-14 and 4-23 experiments for mock- and o 6uM £ —_ 900 1
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Fig. 9. Effects of KN-93 on Ca?*-induced
activation of TMEM16F-dependent Cl™ cur-
rents. A: representative time courses of acti-
vation of whole cell currents after intracellular
application of 100 pM free Ca?" in the ab-
sence (left) and presence (right) of 10 pM
i KN-93 under application of alternating pulses
of = 80 mV. Cells were exposed to a bathing
solution containing KN-93. §Time points at
which step pulses were applied. B: represen-
tative current responses to step pulses from

Control KN-93 ™ : i .

o 11500 —100 to +100 mV in 20-mV increments in
2 the absence (left) and presence (right) of 10
= M KN-93. C: steady-state [-V relationships
~ 1 4000 for Ca®*-activated TMEM16F C1~ currents in
the absence and presence of KN-93. Each data
© Control point represents the means = SE (vertical bar)

® KN-93 500 / of 5 and 6 experiments.
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knockdown of TMEM16F and TMEMI16K failed to suppress
endogenous VSOR currents in HEK293T and HeLa cells (Fig.
2). Furthermore, we confirmed that even in TMEMI16F- and
TMEMI16K-overexpressing HEK293T cells, VSOR currents
were activated to the same extent as in control cells upon
hypotonic swelling (Fig. 3). Our results therefore indicate that
neither TMEM 16F nor TMEM 16K is a component of VSOR in
human epithelial cells.

We previously demonstrated that an outwardly rectifying
Cl™ current is activated by apoptotic stimuli, including stau-
rosporine, Fas ligand, TNF-a, and H»O», and that the current is
conveyed by VSOR in HeLa cells (28). More recently,
TMEMIG6F has been proposed to function as an outwardly
rectifying C1~ channel activated by apoptotic stimuli such as
staurosporine and Fas ligand in several cell lines (16). In the
present study, however, staurosporine-induced outwardly rec-
tifying C1™ currents were indistinguishable regardless of the
TMEMIG6F expression (Fig. 4). In addition, staurosporine-
induced AVD observed in HeLa cells transfected with
TMEMIG6F siRNA was equivalent to that in control cells.
These results demonstrate that TMEM16F does not contribute
to the VSOR activity induced by staurosporine. Future studies
will clarify whether other members of the TMEM 16 family are
components of the VSOR activated by osmotic cell swelling or
apoptotic stimuli.

TMEMIG6F, but not TMEM 16K, is a component of a CaCC.
In this study we demonstrated that the transfection of
TMEMI6F gives rise to activity of a Ca"-activated channel in
HEK?293T cells. The TMEM16F-dependent currents recorded
by whole cell patch-clamp under symmetrical CsCl conditions
exhibited strong outward rectification (Fig. 5). Time-dependent
activation and deactivation were observed at +100 mV and
—100 mV, respectively. The current profile was similar to the
profiles for TMEM16A and TMEM16B Cl™ channels (4, 22,
33, 37). In fact, the TMEM 16F-dependent current was found to

be anion-selective, because reduction of the extracellular C1—
concentration without an alteration in the concentration of any
cations in the bathing solution shifted the reversal potential to
a positive voltage (Fig. 6, A-C) and substitution of Na™ with
NMDG™ in the bathing solution did not significantly change
the reversal potential (Fig. 6, D and E). The anion selectivity
sequence for TMEMI16F channels was I~ > Br~ > CI” > F >
aspartate” (Fig. 6, B, C, F, and G), which corresponds to the
selectivity sequences for TMEM16A and TMEM16B. Taken
together, these results show that TMEMIG6F is a component of
a CaCC. Also, TMEMIG6F CI™ currents were inhibited by
NFA, a known CaCC blocker, in a concentration-dependent
manner with an ICso of 213 puM (Fig. 7). Although
TMEMI16A-dependent Cl™ currents were found to be signifi-
cantly inhibited at the concentration as low as 10 uM (37),
significant inhibition of TMEM16F CI~ currents was observed
by NFA only at = 100 uM (Fig. 7C). These results indicate
that the TMEMIGOF Cl™ channel is less sensitive to NFA
compared with the TMEM16A Cl~ channel.

It has recently been reported that some members of the
TMEMI16 family, including TMEMIG6F, are intracellularly
localized when transfected in several cell lines (7). However,
Schreiber et al. (25) demonstrated by immunocytochemistry
that TMEMI16F is expressed on the plasma membrane; further-
more, by iodide quenching and whole cell patch-clamp exper-
iments, they showed that it produces a very small Ca>"-
activated Cl~ conductance. Here, we observed large out-
wardly rectifying CI™ currents in TMEMI16F-expressing
HEK?293T cells when the intracellular free Ca?™ concentra-
tion was increased, indicating plasma membrane expression
of TMEMIG6F.

It was previously reported that TMEM 16K produces small
CaCC currents in whole cell patch-clamp recordings (25). The
present study, however, demonstrated that in TMEMI16K-
overexpressing HEK293T cells, ionomycin induced only small
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CaCC currents that are comparable to endogenous CaCC
currents in mock-transfected cells (Fig. 5, A and B). In addi-
tion, we could not observe TMEM16K-dependent C1™ currents
even when the intracellular free Ca®>* concentration was in-
creased to 100 pM (Fig. 5C). The reason for the discrepancy
between our results and the previously reported results is at
present unknown. However, it must be noted that 25 amino
acids in the putative pore region of TMEMI16K are missing
(14). Thus a reasonable assumption might be that TMEM16K
has no channel function, although the possibility of intracellu-
lar expression of TMEM16K in our expression system cannot
be ruled out.

Ca®™ sensitivity of TMEM16F-dependent CaCC is distinct
from that of TMEM16A/B. The voltage- and time-dependence
of Ca*>*-induced activation of TMEM16A and TMEM16B C1~
channel currents is known to be Ca>* dependent (4, 22, 35,
37): at nanomolar levels of intracellular free Ca®", the
TMEMI16A and TMEMI16B currents exhibit outward rectifi-
cation and time-dependent activation at positive potentials, but
their /-V relationships become linear and the fraction of time-
dependent currents was reduced when the intracellular free
Ca®* concentration was increased to micromolar levels. In the
present study, however, TMEMI16F-dependent Cl™~ currents
exhibited outward rectification and time-dependent activation
at positive potentials even at a free Ca®>" concentration as high
as 100 pM (Fig. 8A4), and the pattern of outwardly rectifying
I-V relationships was essentially independent of the intracellu-
lar free Ca®" level between 10 and 100 uM (Fig. 8B). Al-
though activation of the TMEMI16F CI~ current was Ca**
dependent, the Ca®" sensitivity of the TMEM16F-dependent
Cl™ channel is lower than that of the TMEMI6A- and
TMEMI16B-dependent CI™ channels: the ECsq for Ca’*-de-
pendent activation of TMEMI6F currents was 9.6 uM at +100
mV (Fig. 8C), whereas for TMEM16A and TMEM16B cur-
rents, it has been reported to be 0.4 pM at +60 mV and
1.2-4.0 pM at +40 to +60 mV, respectively (22, 29, 37). In
the present study, we observed endogenous CaCC currents in
mock-transfected cells. The ECsq for Ca2+-dependent activa-
tion of endogenous CaCC currents recorded at +100 mV was
8.7 wM, which is similar to that for TMEM16F-dependent
CaCC currents (Fig. 8C). Thus it appears that the TMEM 16F-
dependent CaCC is distinct from TMEM16A- and TMEM 16B-
dependent CaCCs in its Ca*>* sensitivity.

Native CaCCs in a variety of cells have been reported to
show different sensitivities to intracellular Ca** that fall in the
nanomolar to micromolar range (10): in skeletal muscle cells,
myocytes, epithelial cells, and endothelial cells, for example,
half-maximal activation of Ca’"-activated Cl~ channels oc-
curs at submicromolar Ca’>" levels. In contrast, CaCCs in
olfactory neurons show lower Ca?™" sensitivity. The differences
in Ca®" sensitivity might reflect the different TMEM16 protein
subtypes specifically expressed in each tissue. Actually,
TMEMI16A and TMEM16B have been demonstrated to con-
stitute epithelial and olfactory Ca®*-activated Cl~ channels,
respectively (8, 29). Considering that TMEMI16F is ubiqui-
tously expressed (25), it would be interesting to investigate
how the level of TMEMI6F expression affects the Ca®*
sensitivity of endogenous CaCCs in different cell types.

In the present study, we observed slow time course of
activation of TMEMI16F C1™ channels induced by ionomycin
(Fig. 5B) and an elevated Ca®>" concentration (Fig. 9A4), sug-

TMEMIG6F IS A DISTINCT TYPE OF Ca?*-ACTIVATED CI~ CHANNEL

gesting an involvement of some indirect activation mechanism.
Activation of some types of CaCCs is known to be mediated by
CaMKII (2, 11). In the present study, however, a CaMKII
inhibitor (KN-93) had no effects on the Ca®*-induced activa-
tion of TMEM16F C1™ channels (Fig. 9). The direct interaction
of TMEM16A with a SNARE protein complex and an ezrin-
radixin-moesin network suggested an involvement of traffick-
ing to the plasma membrane in the TMEMI6A activation
mechanism (21). However, the membrane capacitance was
constant during a series of experiments in the present study
(data not shown). Thus it appears that Ca>*-induced activation
of TMEMI16F CI~ channels is not mediated by CaMKII or
membrane trafficking. Further investigation is needed, in fu-
ture, to clarify whether the TMEM16F CI™ channel is indi-
rectly activated via other Ca*>*-dependent pathways.

Conclusions. Of the members of the TMEMI16 family,
TMEMI16F has been especially controversial in regards to its
function. TMEM16F has been reported to produce small CaCC
currents (25); it has also been reported to contribute to VSOR
currents (1), outwardly rectifying CI~ currents involved in
apoptosis (16), and a Ca®*-dependent phospholipid scramblase
activity (27, 32). We demonstrate here that human TMEM16F
is a component of a CaCC that has strong outward rectification
independent of the intracellular free Ca>* level and has a Ca*>*
sensitivity lower than that of TMEM16A or TMEM16B; how-
ever, it is unrelated to the VSOR activity which is activated
upon osmotic cell swelling or apoptotic stimulation.

NOTE ADDED IN PROOF

Since this manuscript was submitted, three articles reporting possible
functions of TMEMI16F have appeared. Szteyn et al. (33) reported that
endogenous TMEM16F functions as a CaCC in mouse dendritic cells on the
basis of siRNA-mediated knockdown. Tian et al. (34) also recently reported
that C1~ current activation was induced in human TMEM 16F-overexpressing
HEK293 cells when the intracellular Ca?>* concentration was increased to
more than 10 wM. These observations are in agreement with our present study.
In contrast, Yang et al. (36) reported that TMEM16F forms a Ca”"-activated
cation channel based on the data obtained by knockout mice and heterologous
expression. Tian et al. (34) also observed sizable cation permeability through
TMEMI6F channels. In the present study, however, human TMEMI6F-
mediated channel was found to be anion-selective (Fig. 6D, E).
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