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Ca2� signal has major roles in cellular processes important in tumor-
igenesis, including migration, invasion, proliferation, and apoptotic
sensitivity. New evidence has revealed that, aside from altered ex-
pression and effects on global cytosolic free Ca2� levels via direct
transport of Ca2�, some Ca2� pumps and channels are able to
contribute to tumorigenesis via mechanisms that are independent
of their ability to transport Ca2� or effect global Ca2� homeostasis
in the cytoplasm. Here, we review some of the most recent studies
that present evidence of altered Ca2� channel or pump expression
in tumorigenesis and discuss the importance and complexity of
localized Ca2� signaling in events critical for tumor formation.

ATPases; channels; pumps; local Ca2�, ORAI

THE VERSATILITY and complexity of the Ca2� signal is widely
established, with Ca2� ions involved, either directly or indi-
rectly, in almost every aspect of cellular processes (5, 49).
Comprising an extensive range of signaling components, in-
cluding channels, pumps, and exchangers, the Ca2� signaling
system is important in the regulation of processes relevant to
tumorigenesis, including cell proliferation and apoptosis (5,
49). Research has increasingly focused on the identification of
Ca2� transporting proteins, with altered expression in cancer,
with several publications reviewing this area (49, 63). The
traditional dogma has been that Ca2� pumps and channels
contribute to tumorigenesis through alterations in global cyto-
solic free Ca2� concentration. However, very recent discover-
ies challenge this traditional emphasis and highlight the im-
portance of localized Ca2� signals from intracellular compart-
ments and subcellular microdomains. These studies also
suggest that some Ca2� pumps and channels can promote
tumor progression via unique mechanisms, which are indepen-
dent of Ca2� transporting function. This review aims to pro-
vide an insight into the most recent developments and findings
relating to aberrant expression of Ca2� transporters in various
cancer types and also address current controversial and unex-
plored areas in the field.

Ca2� Pumps and Channels in Cancer: Recent Progress and
Issues

Over the past four years, there has been a significant increase
in published work reporting on Ca2� channels and pumps that
are associated with cancer. There has also been a significant

increase in the types of cancers that are associated with
alterations in the expression of specific Ca2� transporters. A
summary of important Ca2� transport proteins that are reported
to have altered expression or activity in some of the most
common cancers is shown in Table 1.

An association between the plasma membrane Ca2�-ATPase
(PMCA), a p-type ATPase responsible for the extrusion of
Ca2� ions from the cytosol into the extracellular domain, and
cancer was established in 1997. SV40 transformed human skin
and lung fibroblasts were shown to have reduced levels of
PMCA protein (65). Since that time, further work has been
published in the area of PMCAs and cancer. An upregulation
of the PMCA2 isoform has been shown to occur in some breast
cancer cell lines (40), and PMCA also has a potential role in
regulating the proliferation of MCF-7 breast cancer cells (41).
More recently, work by other laboratories has extended the
study of PMCA2 expression to human clinical samples and
defined a possible role of PMCA in the acquisition of apoptotic
resistance (77). When PMCA2 is overexpressed in T47D
breast cancer cells, alterations are seen in the magnitude and
recovery of Ca2� transients by an increased capacity to extrude
Ca2� from the cytoplasm, significantly reducing apoptosis in
response to a Ca2� ionophore (77). PMCA2 overexpression
may thus contribute to cancer progression via the acquisition of
an apoptotic resistant phenotype. Further linking PMCA2 and
tumor characteristics, VanHouton et al. (77) also found an
association between PMCA2 levels and tumor grade, nodal
metastases, and poor clinical outcome.

As suggested by the early work of Reisner et al. (65) in
SV40 transformed cells, PMCA can also contribute to tumor-
igenesis via reduced expression. PMCA4 mRNA levels are
downregulated as an early event in human colon tumorigen-
esis (2). Correspondingly, when HT-29 colon cancer cells
are differentiated with either sodium butyrate or by cultur-
ing postconfluence, they have an isoform-specific increase
in PMCA4 expression (1, 2). Compromised Ca2� efflux may
provide colon cancer cells with a growth advantage through
the promotion of proliferative pathways; this remodeling in
PMCA expression does not occur to a degree that would
sensitize colon cancer cells to apoptotic stimuli (2).

Transient receptor potential (TRP) channels are arguably the
most comprehensively studied class of Ca2� signaling proteins
in the context of cancer (43, 71). Recent studies such as those
linking TRPM8 and TRPV6 channels with prostate cancer (6,
22) have provided new depth into the potential significance of
TRP channel expression in cancer. Although the overexpres-
sion of TRPV6 in prostate cancer has been established, current
research aims to investigate the mechanisms by which TRPV6
overexpression contributes to prostate carcinogenesis. TRPV6-
mediated Ca2� influx stimulates activation of the Ca2�-depen-
dent transcription factor nuclear factor of activated T-cells
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(NFAT) to modulate proliferation and promote resistance to
apoptosis in prostate cancer cells (42). Another channel impli-
cated in prostate cancer development is a member of the
melastatin subfamily of TRP channels, TRPM8, which is
overexpressed in early-stage prostate cancer (90). However, as
the disease progresses to a metastatic, androgen-independent
stage, TRPM8 expression is downregulated (35, 64). New
research has identified a natural agonist for TRPM8 in the
prostate. Gkika et al. (28) show that prostate-specific antigen
(PSA), a well-known prostate cancer marker, promotes
TRPM8 activity via the bradykinin/protein kinase C signaling
pathway. Using cell surface biotinylation, they showed that the
increased TRPM8 current was due to an increase in functional

TRPM8 channels localized to the plasma membrane. Migration
assays show that PSA reduces cell motility (28).

Further research into the molecular mechanisms underlying
prostate cancer progression shows that TRPV2 has a role.
TRPV2 mRNA levels are approximately 12 times greater in
patients with late-stage metastatic prostate cancer compared
with samples from localized primary solid tumors, suggesting
TRPV2 as a potential prognostic marker for this late-stage of
disease (48). Overexpression appears to bestow elevated cyto-
solic Ca2� levels to the cell, which enhances their ability to
migrate and invade into adjacent tissue, through direct regula-
tion of key invasion proteases such as the matrix metallopro-
teinases MMP2 and MMP9 (48). Interestingly, another recent

Table 1. Changes in the expression or activity of some Ca2� channels and pumps in selected cancers (patient samples and
cell lines) from the top 15 cancer sites for both genders

Cancer Type and Channel/Pump Channel or Pump Change in Cancer References

Prostate cancer
TRPM8: patient tissue samples Up*† 24, 62, 72, 75
TRPM8: androgen-independent prostate cancer Down* 64
TRPV6: patient tissue samples Up* 22, 58, 85, 92
ORAI1: androgen-independent prostate cancer cell line Down*† 23
TRPV2: patient tissue samples (androgen-independent prostate cancer) Up* 48

Breast cancer
TRPM8: patient tissue samples/cell lines Up*† 10, 75
TRPV6: patient tissue samples Up* 92
TRPC6: patient tissue samples/cell lines Up*† 3, 32
PMCA1: cell lines Up* 39
PMCA2: cell lines Up* 40, 77
SPCA2: patient tissue samples/cell lines Up* 20
ORAI1: cell lines Up* 47
ORAI3: patient tissue samples/cell lines Up* 19

Lung cancer
IP3R2: patient tissue samples (nonsmall cell) Up* 34
CACNA2D2: patient tissue samples/cell lines Down* 44
TRPM8: patient tissue samples Up* 75
PMCA: SV40 transformed fibroblasts Up† 65
SERCA2: patient tissue samples Down* 37

Colon and colorectal cancer
CaV1.1 (L-type): patient tissue samples/cell lines (colorectal) Up* 91
CaV1.2 (L-type �1C): patient tissue samples/cell lines (colon) Up* 82
CaV3.1 (T-type �1G): patient tissue samples/cell lines (colorectal cancer and adenoma) Down* 74
CaV3.3 (T-type �1I): patient tissue samples/cell lines (colon carcinomas and adenomas) Down* 57
TRPM8: patient tissue samples (colorectal adenocarcinoma) Up* 75
TRPV6: patient tissue samples (colon) Up* 92
SERCA2: patient tissue samples (colon) Down* 37
SERCA2: patient tissue samples (colorectal) Up* 11
SERCA3: patient tissue samples/cell lines Down† 7, 25
PMCA4: patient tissue samples Down* 2

Bladder cancer
TRPV1: patient tissue samples Down† 38

Melanoma
TRPM1: patient tissue samples and cell lines Down* 12, 15

Oral cancer
PMCA1: squamous cell carcinoma, patient tissue samples/cell lines Down*† 69
SERCA2: squamous cell carcinoma, patient tissue samples/cell lines Down*† 17

Thyroid cancer
TRPV6: patient tissue samples Up* 92
SERCA2: cell lines Down *†‡1 52

Gastric cancer
IP3R3: patient tissue samples (mRNA only)/cell lines Up*† 70
CaV3.1 (T-type �1G): patient tissue samples/cell lines Down* 74
TRPC6: patient tissue samples Up*† 8

Ovarian cancer
TRPV6: patient tissue samples Up* 92
TRPC3: patient tissue samples Up† 89

Information is from the Surveillance, Epidemiology, and End Results (SEER) Cancer Statistics Review 1975–2007 from the National Cancer Institute.
1Microsomal Ca2� ATPase activity. *mRNA; †protein; ‡activity. See text for definitions of abbreviations.
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study reported a progressive decline in TRPV2 levels corre-
sponding to increasing histological grade in human glioma
tissue. Small interfering RNA (siRNA) silencing of TRPV2
resulted in increased cell proliferation and resistance to apop-
tosis via a pathway dependent on extracellular signal-regulated
kinase activation (51). Given the association of TRPV2 with
prostate cancer and glioma, further studies of TRPV2 in a
variety of cancer models are warranted.

Recent work has also extended the association between TRP
channels and cancer to other TRP classes and other cancers as
exemplified by the marked overexpression of TRPC3 protein in
human ovarian cancer samples (89). TRPC3 knockdown using
siRNA leads to a decrease in cell proliferation via the induction
of G2/M phase cell cycle arrest, suggesting a functional con-
sequence of the channel’s overexpression (89). In support of
canonical TRP channels playing an essential role in cell cycle
progression, a similar involvement of TRPC6 was recently
reported in human glioma cells, where inhibition of TRPC6
activity or expression attenuated intracellular Ca2� influx,
also arresting cells at the G2/M phase and suppressing cell
growth (13).

The most rapid acceleration of knowledge in recent years in
the field is related to the study of ORAI ion channels in cancer.
This is in part due to the identification of STIM proteins and
ORAI channels as components of store-operated Ca2� entry in
2005 and 2006, respectively (45, 66, 80). Store-operated Ca2�

entry is the predominant manner of Ca2� influx in nonexcitable
cells (79). The most widely studied proteins of these classes are
STIM1, which functions as an endoplasmic reticulum (ER)
Ca2� sensor, and ORAI1, which is an essential component of
the channel pore (61, 79). Studies on the role of store-operated
Ca2� entry in tumor metastasis were limited until Yang et al.
(88) provided evidence for the role of STIM1 and ORAI1 in
the migration of MDA-MB-231 breast cancer cells. The study
was extended into an animal model, using immunodeficient
NOD/SCID mice to confirm a reduction of breast tumor me-
tastasis with STIM1 and ORAI1 knockdown (88).

Subsequent to this work was the finding of McAndrew et al.
(47) that ORAI1 levels are significantly elevated (up to 21-
fold) in some breast cancer cell lines, relative to normal 184A1
breast cells, and that ORAI1 siRNA-mediated inhibition in
MCF-7 and MDA-MB-231 cells attenuates store-operated
Ca2� entry and viable cell number. ORAI1 activity may be
augmented in some breast cancers via mechanisms distinct
from an increase in ORAI1 expression level. An analysis of
microarray data from 295 clinical samples of breast cancers
showed that tumors defined transcriptionally as basal-like were
characterized by high STIM1 and low STIM2 mRNA expres-
sion (47). This increase in STIM1 relative to STIM2 was
associated with a poorer patient prognosis (47). This study also
showed that STIM1 siRNA-mediated inhibition had more
pronounced effects on store-operated Ca2� entry than inhibi-
tion of STIM2 (47). This work suggests that basal breast cancer
cells may have augmented store-operated Ca2� entry.

The association between store-operated Ca2� entry and
cancer is now being extended to the less well-studied ORAI
channels such as ORAI3. Faouzi et al. (19) report that ORAI3
mRNA is overexpressed in the estrogen receptor-positive
breast cancer cell lines MCF-7 and T47D compared with the
nontumorigenic MCF-10A breast cell line. ORAI3 mRNA is
also increased in some human breast tumors compared with

normal breast samples (19). Downregulation of ORAI3 inhibits
cancer cell proliferation, contributes to cell cycle arrest at the
G1 phase, and increases apoptotic cell death (19). ORAI3
silencing in the nontumorigenic MCF-10A cells did not change
proliferation (19), suggesting that the ORAI3 signaling path-
way is a potential therapeutic target in some human breast
cancers. Work by Motiani et al. (50) has linked ORAI3 to the
store-operated Ca2� entry pathway used in estrogen receptor-
positive breast cancer cells and report elevated ORAI3 protein
in some estrogen receptor-positive cell lines. Collectively,
these results highlight an interesting and diverse role for the
store-operated Ca2� pathway components in breast tumorigen-
esis and attest to the value of further research in this area.

There are limited studies on the role of the principal com-
ponents of store-operated Ca2� entry in cancers originating
from areas outside of the breast. However, interest in other
cancer types is an emerging area as reflected in recent work
linking ORAI1 to prostate cancer (23). ORAI1 is downregu-
lated during the transition to an androgen-independent pheno-
type in prostate cancer cells. ORAI1 inhibition in LNCaP cells
results in resistance to apoptosis mediated by the sarco-endo-
plasmic reticulum Ca2�-ATPase inhibitor thapsigargin (23).
Furthermore, downregulation of ORAI1 in LNCaP cells pro-
tects the cells from chemotherapy-induced apoptosis, using
cisplatin and oxaliplatin, two clinically used agents (23).
Hence, advanced prostate cancers may acquire resistance to
treatment in part due to ORAI1 downregulation. These results
reflect the importance of the ORAI/STIM proteins and the
store-operated Ca2� signaling pathway in the pathogenesis of
cancers and will provoke further research in this field.

Ca2� Transporters and Tumorigenesis: New Mechanisms
and New Complexities

The majority of studies in the context of Ca2� transport in
cancer have of course focused on exploring the relationship
between how alterations in the expression of a Ca2� channel or
pump mediate their effects via the direct movement of Ca2�

ions through the pore of the channel or pump. However, recent
studies in cell lines of both tumorigenic and nontumorigenic
origin offer alternative mechanisms. Tumorigenic processes, in
some cases, may be promoted via unique mechanisms that are
independent of the Ca2� transporting function of the protein or
effects on global cytosolic free Ca2�.

The contribution of the secretory pathway Ca2� ATPases
(SPCAs) in the context of cancer was largely unexplored until
recent work by Feng et al. (20) on SPCA2. SPCA2 is a
Golgi-localized p-type Ca2�-ATPase first characterized in
2005 (78, 86). SPCA2 mRNA levels are upregulated in lumi-
nal-like breast cancer cell lines (20). The consequence of
SPCA2 upregulation is an increase in cell proliferation and
tumorigenicity (as assessed by growth on soft agar). Detailed
examination into the mechanisms responsible for the effect
revealed the ability of SPCA2 to localize to the plasma mem-
brane and elicit constitutive Ca2� influx through direct inter-
action of its NH2-terminus with ORAI1 (20). The separation of
the ORAI1 activation function from the ion transporting ability
of SPCA2 was demonstrated by the ability of ion transport-
deficient mutants to activate Ca2� influx, NFAT signaling, and
proliferation. This study provides an example of how a Ca2�

pump can augment cancer processes via a mechanism distinct
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from its primary Ca2� transport function. Physiologically, such
a mechanism may be important in processes requiring sus-
tained Ca2� secretion such as lactation, where SPCA2 expres-
sion is increased (18).

The complexity of ORAI channel regulation is further high-
lighted by the ability of STIM2 to activate ORAI1 in a
store-independent manner (30). STIM2 has now been reported
to exist in distinct functional forms: the widely investigated
STIM2 and another population, referred to as pre-STIM2, that
is able to escape ER targeting (30). Immunolocalization re-
vealed that cytosolic pre-STIM2 localizes to the plasma mem-
brane, where it interacts with ORAI1, increasing basal Ca2�

concentration in a manner that is independent of ER Ca2� store
depletion (30). The increase in basal Ca2� concentration by
pre-STIM2 results in the induction of NFAT and nuclear
factor-�B (NF-�B)-mediated gene transcription (30). Further
to this, a third population, which is actually a fragment of the
STIM2 signal peptide, upon its release from the ER membrane
into the cytoplasm, becomes a regulator of gene transcription
in a Ca2� independent fashion (30). Together, these findings
support the repositioning of paralogs in protein families into
subcellular compartments as an emerging method for the func-
tional diversification of replicated genes (30). Given the role of
SPCA2 regulation of ORAI1 in breast cancer, assessment of
pre-STIM2 in cancers, including those aside from the breast
would now seem a priority. Figure 1 is a schematic represen-
tation that summarizes regulators of ORAI1 channels and
activation associated with tumorigenesis as described in this
review.

SPCA2, which as discussed above, activates ORAI1, is not
the only example of a Ca2� transporter with dual functionality.
In neuronal cells, the voltage-gated channel CaV1.2 can pro-
duce a COOH-terminal fragment of CaV1.2 known as Ca2�

channel-associated transcriptional regulator (CCAT) (29).
CCAT translocates into the nucleus, binds to nuclear proteins
such as p54(nrb)/NonO, and regulates the expression of genes

critical for neuronal signaling (29). The potential significance
of such mechanisms in cancer is still to be explored.

Another recent study by Wang et al. (83) provides further
insight into mechanisms by which Ca2� channels may be
regulated, suggesting a crucial link between receptor-induced
Ca2� store depletion and the control of voltage-activated sig-
nals. This group showed that STIM1 activation by store deple-
tion not only leads to the activation of ORAI channels but also
attenuates the activity of CaV1.2 (83). Although the action of
STIM1 on CaV1.2 is independent of ORAI channels, its effects
on both of these Ca2� channels are spatially and functionally
connected. ORAI channels trap STIM1 in puncta and cause
STIM1 to become closely associated with CaV1.2 channels
(83). One could postulate that cancer cells could have dereg-
ulation of these complex channel regulation mechanisms.

The arachidonic acid pathway has been implicated as a key
inflammatory pathway involved in the cellular signaling con-
tributing to prostate carcinogenesis (56, 76). Arachidonic acid
is an inhibitor of TRPM8, a channel overexpressed in andro-
gen-dependent prostate cancer (75, 90). However, the physio-
logical pathways and surface receptors mediating the effect of
arachidonic acid on cancer progression remain largely unin-
vestigated. Bavencoffe et al. (4) have recently reported on the
role of arachidonic acid release in the complex regulation of
TRPM8 through the M3-type muscarinic acetylecholine recep-
tor-coupled signaling cascade. Their results showed that the
application of a nonselective muscarinic agonist suppressed the
activity of TRPM8 channels expressed in HEK-293 cells via
stimulation of cytosolic phospholipase A2 (cPLA2) and sub-
sequent generation of arachidonic acid. Further research into
other surface receptors as regulators of ion channel activity in
cancer cells is now required.

Localized Ca2� Signaling

Changes in global cytosolic Ca2� homeostasis through al-
terations in Ca2� transporter expression or activity has been the
focus of researchers characterizing changes in Ca2� signaling
in cancer cells (49). Spatially restricted Ca2� signaling within
specific cellular compartments or discrete cytosolic domains
provides an additional layer of complexity in the regulation of
cellular processes important in tumorigenesis; however, this
has not yet been extensively assessed in the context of cancer.

Compartmental Ca2�

Ca2� gradients, such as those maintained by the ER, mito-
chondria, nucleus, and the Golgi help confer versatility to the
Ca2� signal, enabling the control of many cellular processes
within a single cell (5). An example of the deregulation of
Ca2� stores that may occur in cancer is seen in the regulation
of ER Ca2� homeostasis by the anti-apoptotic protein BCL2.
Ca2� transfer from the ER to the mitochondria, if sufficient in
magnitude, leads to the activation of cell death pathways (59).
Many studies have now established a role for BCL2 in the
inhibition of Ca2� transfer between these often closely apposed
organelles (9, 33, 59). A reduction in the luminal ER free Ca2�

level ([Ca2�]ER), inhibition of Ca2� release from the ER, and
inhibition of Ca2� accumulation by mitochondria are all pos-
sible mechanisms for the anti-apoptotic effects of BCL2 (14,
33) and are a further link between Ca2� signaling and pro-
cesses important in cancer. A recent study by Giorgi et al. (27)

Fig. 1. ORAI1 and cancer. Schematic representation of some regulators of
ORAI1 channel activity leading to increased activity of transcription factors
such as nuclear factor of activated T-cells (NFAT) and nuclear factor �B
(NF�B) and the functional consequences in relation to the development of
cancer. Note that this figure is not intended to convey information currently
known about the stoichiometry of ORAI1 and its regulators. SPCA, secretory
pathway Ca2�-ATPase.
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identified a role for the promyelocytic leukemia (Pml) protein
in ER-mitochondrial Ca2� transfer. Pml is present at ER and
ER-mitochondrial contact sites. Studies comparing Pml�/� and
Pml�/� mouse embryonic fibroblasts showed that ER-local-
ized Pml is associated with a higher [Ca2�]ER and a larger
Ca2� transient in response to apoptotic stimuli. Loss of func-
tional Pml on the ER [as reported in some cancer cells (27)],
results in an impairment of Ca2� transfer between the ER and
mitochondria and the evasion of Ca2�-mediated cellular apop-
tosis (27). Hence, therapeutic modulation of targets that regu-
late [Ca2�]ER and/or ER-mitochondrial Ca2� transfer may be
able to augment apoptosis in cancer cells without disrupting
global Ca2� homeostasis.

Nuclear Ca2� signaling has been the subject of debate since
the first reports of differential Ca2� signaling in the nucleus
(26). The notion of a nuclear-cytoplasmic Ca2� gradient has
obvious implications for the regulation of gene transcription
during tumorigenesis. One possible mechanism for a differen-
tial Ca2� concentration between the cytosol and the nucleus
may be buffering of Ca2� by perinuclear mitochondria (26).
Careful studies in cancer cells are required before the potential
impact of this phenomenon on aberrant gene transcription in
cancer cells and tumor progression can be fully understood.

Posttranslational protein modification and the trafficking of
secreted proteins is the responsibility of the Golgi, which
maintains a relatively high luminal Ca2� concentration com-
pared with the cytosol (60). This Ca2� gradient appears to be
predominately mediated via SPCAs. Recent studies assessing
the potential significance of SPCA1 upregulation in the basal
breast cancer subtype has shown that the silencing of SPCA1
inhibits the processing of the insulin-like growth factor recep-
tor-1 (31). This change occurs without an impact on general
cytosolic free Ca2� homeostasis (e.g., changes in [Ca2�]CYT

recovery after stimulation). Hence, some Ca2� transporters
may contribute to tumor progression through alterations in
Golgi luminal Ca2�. Rather than altering cytosolic Ca2� dy-
namics, SPCA1 may contribute to cancer pathways by altering
the activity of Ca2�-regulated enzymes that are responsible for

the posttranslational modification of proteins important in cell
proliferation, apoptosis, and differentiation (31).

Spatial Heterogeneity in Cytosolic Ca2� Signaling

The importance of localized Ca2� signaling during excita-
tion-transcription coupling is increasingly investigated in neu-
rons and during the phenotypic conversion of vascular smooth
muscle cells (46, 81). Ma et al. (46) demonstrated a role for
local Ca2�/calmodulin (CaM) and calmodulin-dependent pro-
tein kinase II (CaMKII) in decoding Ca2� signaling via L-type
voltage-gated channels in sympathetic neurons. The ability of
CaM to act as both a local and global Ca2� sensor, via its
COOH- and NH2-terminal lobes, respectively, highlights the
importance of this protein in integrating the spatiality of the
Ca2� signal (73). CaM and CaMKII are deregulated in several
cancers including thyroid and prostate cancers (67, 68) and the
ability of localized Ca2� signaling to regulate these proteins
highlights the need for this aspect of their regulation to be
further explored in tumorigenesis. Localized Ca2� events,
defined as Ca2� “flickers,” are also an important regulator of
migration in human embryonic lung fibroblasts exposed to a
growth-factor gradient (84) and are another example of a
pathway that requires further assessment in cancer cells.

Regulation of gene transcription via NFAT is a defining
feature of local store-operated Ca2� entry currents (21), which
as discussed previously in this review, is a Ca2� influx path-
way increasingly linked to cancer. The NFAT family of tran-
scription factors regulates many cancer-related processes in-
cluding cellular differentiation, migration, and angiogenesis.
Kar et al. (36) recently demonstrated that thapsigargin-induced
store-operated Ca2� entry induces NFAT1 nuclear transloca-
tion. Through a series of elegant experiments, this pathway was
shown to be dependent on the local Ca2� concentration near
the Ca2� channel pore. EGTA-AM, a cytosolic Ca2� chelator
with a slow Ca2� buffering on-rate, significantly reduced the
[Ca2�]CYT response; however, EGTA-AM failed to block
NFAT translocation to the nucleus, indicative of a dependence
on localized Ca2� signaling. Overexpression and activation of

Fig. 2. Contrasting mechanisms for Ca2� transporters in cancer. Ca2� transporters may regulate processes important in tumorigenesis via two broadly distinct
signaling mechanisms. Traditionally studies examining the importance of specific transporters in cancer have assessed gene and/or protein expression of these
transporters in normal (A) versus cancer cells (B). Targets identified as having altered expression in cancer (depicted here as an increase in expression) lead to
changes in the global cytosolic Ca2� ([Ca2�]CYT) profile and augment processes important in tumorigenesis, such as cell proliferation and migration. Although
expressed in similar levels to normal cells, Ca2� transporters that act via localized signaling (C) may also have major roles in tumorigenesis due to areas of
privileged Ca2� signaling activating downstream signaling events. This highlights the importance of an integrated approach to cancer research, utilizing studies
assessing the functional role of Ca2� transporters in cancer in addition to the assessment of changes in expression and global cytosolic Ca2� responses.
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TRPC3, which produces a similar Ca2� transient to store-
operated Ca2� entry, did not induce NFAT translocation (36).
Collectively, these results implicate a mechanism whereby the
spatial Ca2� concentration gradient in the cytosolic microdo-
main adjacent to Ca2� channels, such as ORAI1, are important
in gene transcription. The recently identified associations with
ORAI channels and some cancers provide new impetus to
explore this phenomenon in cancer cells.

The link between Ca2� transporters and cancer may be
through specific plasma membrane domains such as plas-
malemmal lipid rafts and caveolae (54). Caveolae are mem-
branous invaginations that serve as signaling complexes via the
clustering of related signaling proteins into discrete microdo-
mains (55). Upon ER Ca2� store depletion, the fraction of the
Ca2� channel TRPC1 and the ORAI1 channel activator STIM1
localized to the lipid raft domain increases (53). Several studies
have demonstrated an interaction between ORAI1 and caveo-
lin-1 (54), and when combined with studies showing that
pharmacological disruption of lipid rafts impairs store-operated
Ca2� entry (53), provide compelling evidence for the impor-
tance of plasma membrane microdomains in this type of Ca2�

influx. This relationship has significant implications in cancer,
as the caveolae coat protein caveolin-1 is linked to processes
important in cancer metastasis (87) and is enriched in clinical
breast cancer samples associated with a poor prognosis (16).

One important implication of localized Ca2� signaling may
be a divergence between studies investigating the expression of
Ca2� transporters in cancer and those assessing function.
Proteins with a relatively low endogenous expression may still
wield significant responses in cells due to regions of privileged
Ca2� signaling in the vicinity of downstream targets, and thus
should not be disregarded as having a role in tumorigenesis
(Fig. 2). Conversely, models founded on heterologous expres-
sion of proteins that signal via localized Ca2� may be mislead-
ing. Forced expression of these proteins may skew the ratio
between the protein of interest and its natural downstream
signaling partners. Although these studies may provide valu-
able information for research, they should not be interpreted in
isolation, rather in conjunction with studies assessing the
functional role of these proteins in physiology and pathophys-
iology.

Conclusion

In summary, this review has focused on very recent discov-
eries of changes in the expression and/or activity of important
Ca2� transporters in cancer cells, such as the overexpression of
TRPC3 in ovarian cancer and ORAI-mediated Ca2� influx in
some breast cancer cells. We have also described unusual
mechanisms by which some Ca2� transporters contribute to
tumorigenesis in a manner distinct from their primary trans-
porting function or global cytosolic Ca2� levels. Over the next
five years, we will see current advanced approaches to the
study of Ca2� signaling being used to define the mechanisms
by which Ca2� transporters contribute to tumorigenesis.
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