Scope of Journal
The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.

Authors are required to submit papers online at www.apscentral.org.

A Few Highly Cited Articles

Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus. Lee HK, Takamiya K, He K, Song L, Huganir RL. J Neurophysiol. 2010 Jan;103(1):479-89.

CALL FOR NOMINATIONS

For the Editorship of

Physiology

Nominations are invited for the Editorship of Physiology to succeed W. Boron, who will complete his term as Editor on June 30, 2012. The Publications Committee plans to interview candidates in the Fall of 2011.

Applications should be received before August 15, 2011.

Nominations, accompanied by a curriculum vitae, should be sent to the Chair of the Publications Committee:

Hershel Raff, Ph.D.
American Physiological Society
9650 Rockville Pike
Bethesda, MD 20814-3991
Abbreviations

Listed below are abbreviations and their definitions. These may be used without definition in the APS Journals. See Information for Authors (www.the-aps.org/publications/journals/pub_quick.htm) for other abbreviations, symbols, and terminology.

ACCh acetylcholine
AChT adrenocorticotropic hormone
ADP (CDP), adenosine 5'-diphosphate (and similarly for cytidine, guanosine, inosine, uridine, xanthosine, thymidine)
GDP, XDP, ATP, and similarly for adenosine 5'-triphosphate, etc.
AMP, etc. acetylcholine
AMP, etc. adenosine 5'-monophosphate, etc.
ANG I, etc. angiotensin I, etc.
ANOVA analysis of variance
ATPase, etc. adenosine 5'-triphosphatase, etc.
AVP arginine vasopressin
BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N',N'',N'''-tetraacetic acid
BCECF 2.7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein
BP base pair(s)
BSA bovine serum albumin
CaMK Ca2+/calmodulin-dependent kinase
CaMKK CaMK kinase
cAMP, etc. carbonyl cyanide m-chlorophenylhydrazone
CCCP carbonyl cyanide N,N,N',N''-tetraacetic acid
CCK cholecystokinin
cDNA complementary DNA
cGMP cyclic guanosine monophosphate
cGlu glutamic acid
CoA coenzyme A (also, acyl-CoA)
CoA coenzyme A
CoA coenzyme A
C-Re corticotropin-releasing factor
DDE desmopressin
DEAE diethylaminoethyl
DIDS 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid
DMEM Dulbecco’s modified Eagle’s medium
DMSO dimethyl sulfoxide
DNA deoxyribonucleic acid
dNase deoxyribonuclease
DOC deoxy cortisolosterone
DOCA deoxycorticosterone acetate
dpm disintegrations per minute
DTNB 5,5'-dithiobis(2-nitrobenzoic acid)
ECo concentration giving half-maximal response
EGC electrocardiogram
ECM extracellular matrix
EDTA ethylenediaminetetraacetic acid
EFG electroencephalogram
EGF epidermal growth factor
EGTA ethylene glycol-bis[β-aminoethyl ether]-N,N',N''-tetraacetic acid
EIP endoperoxide
ELISA enzyme-linked immunosorbent assay
EMSA electrophoretic mobility shift assay
ERK extracellular signal-regulated kinase
FAD flavin adenine dinucleotide
FADH2 reduced flavin adenine dinucleotide
FBS fetal bovine serum
FCS fetal calf serum
FCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone
FGF fibroblast growth factor
FICU fluorouracil 5-fluorouracil
FICU glucocorticoid-induced uridine conjugate
FHL follicle-stimulating hormone
GABA γ-aminobutyric acid (also, “GABAergic”)
GAP growth-associated protein
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GC-MS gas chromatography-mass spectrometry
GDPS guanosine 5'-O-(2-thiodiphosphate)
GSH reduced and oxidized glutathione
GTP-s guanosine 5'-O-(3-thiotriphosphate)
GSK glycogen synthase kinase
Hb hemoglobin
HBSS Hanks’ balanced salt solution
Hct hematocrit
HDLC high-density lipoprotein
HEPES N-2-hydroxyethylpiperazine-N'2-ethanesulfonic acid
HETE hydroxyeicosatetraenoic acid
HPLC high-performance liquid chromatography
5-HT 5-hydroxytryptamine (serotonin)
IMX insulin-like growth factor I and II
ICa concentration giving half-maximal inhibition
ICAM intercellular adhesion molecule
IFN interferon
IGF-I, II insulin-like growth factor I and II
IgG, etc. immunoglobulin G, etc.
IKK IκB kinase
IL-1 interleukin-1 (IL-2, etc.)
The American Physiological Society (APS) provides leadership in the life sciences by promoting excellence and innovation in physiological research and education and by providing information to the scientific community and to the public.

The Awards, Grants, and Fellowships programs are designed to strengthen and shape the discipline through awards that support, recognize, and publicize the scholarly and research activities of APS Members.

For Full Details or Questions on all awards, grants and fellowships, visit The American Physiological Society web site at: www.the-aps.org/awards

www.the-aps.org/awards
HYPOXIA THEME PAPERS

American Journal of Physiology-Cell Physiology Theme: Hypoxia (Editorial) (February 2011)
G. L. Semenza

Intracellular sensors for oxygen and oxidative stress: novel therapeutic targets (February 2011)
T. Miyata, S. Takizawa, and C. van Ypersele de Strihou

Hypoxia regulates cellular metabolism (March 2011)
W. W. Wheaton and N. S. Chandel

Hypoxia and neurotransmitter synthesis (April 2011)
G. K. Kumar

Hypoxia and ion channel function (May 2011)
L. A. Shimoda and J. Polak

Hypoxia and human genetics (June 2011)
D. Yoon, P. Ponka, and J. T. Prchal