Force suppression and the crossbridge cycle in swine carotid artery

Christopher M. Rembold
Cardiovascular Division, Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia
Submitted 7 March 2007; accepted in final form 19 May 2007

Rembold CM. Force suppression and the crossbridge cycle in swine carotid artery. Am J Physiol Cell Physiol 293: C1003–C1009, 2007. First published May 23, 2007; doi:10.1152/ajpcell.00091.2007.—Cyclic nucleotides can relax arterial smooth muscle without reductions in force suppression. Two potential mechanisms for force suppression: 1) phosphorylated crossbridges binding to thin filaments could be inhibited or 2) the attachment of thin filaments to anchoring structures could be disrupted. These mechanisms were evaluated by comparing histamine-stimulated swine arterial smooth muscle with and without forskolin-induced force suppression and with and without latrunculin-A-induced actin filament disruption. At matched force, force suppression was associated with higher crossbridge phosphorylation and shortening velocity at low loads when compared with tissues without force suppression. Shortening velocity at high loads, noise temperature, hysteresivity, and stiffness did not differ with and without force suppression. These data suggest that crossbridge phosphorylation regulates the crossbridge cycle during force suppression. Actin disruption with latrunculin-A was associated with higher crossbridge phosphorylation when compared with tissues without actin disruption. Shortening velocity, noise temperature, hysteresivity, and stiffness did not differ with and without actin disruption. These data suggest that actin disruption interferes with regulation of crossbridge cycling by crossbridge phosphorylation. Stiffness was linearly dependent on stress, suggesting that the force per attached crossbridge was not altered with force suppression or actin disruption. These data suggest a difference in the mechanical characteristics observed during force suppression and actin disruption, implying that force suppression does not mechanistically involve actin disruption. These data are most consistent with a model where force suppression involves the inhibition of phosphorylated crossbridge binding to thin filaments.

AR TERIAL SMOOTH MUSCLE CONTRACTION primar ily involves stimul us-induced increases in myoplasmic calcium ([Ca2+]i) which induces crossbridge phosphorylation on Ser19 of the myosin regulatory light chain (MRLC) via MRLC kinase (reviewed in Ref. 16). Crossbridge phosphorylation can also be increased by stimulus-induced inhibition of MRLC phosphatase (5, 25). Increases in crossbridge phosphorylation are felt to be the primary regulatory of contraction (17). These processes are termed “activation.”

Relaxation can occur by the following two general mechanisms: 1) “deactivation” is the reversal of activation involving crossbridge dephosphorylation by either a reduction in [Ca2+]i, or an increase in MRLC phosphatase activity (5, 8, 18); 2) “force suppression” is relaxation that occurs while crossbridge phosphorylation levels remain elevated in the presence of excitatory stimuli (1, 11, 22). Phosphorylation of heat shock protein 20 [HSP20, also known as HspB6 (7)] on Ser16 (2, 3, 10, 19, 29) has been proposed to be the mediator of force suppression (12, 19, 22).

The mechanism responsible for force suppression is unknown. One hypothesis is that Ser16 phosphorylation of HSP20 prevents phosphorylated crossbridges from binding to the thin filament, a process that would reduce force despite high crossbridge phosphorylation values (12, 19). One mechanistic explanation for this first hypothesis is that crossbridge binding could be prevented by HSP20 binding to actin in a manner similar to troponin I [TnI; this is based on a sequence homology between HSP20 and the inhibitory region of TnI (19)]. Specifically, an HSP20 peptide [HSP20-(110-121)] shares five identical amino acid residues with a TnI peptide called the inhibitory peptide [the TnI inhibitory peptide inhibits cardiac contraction as well as native TnI (28)]. HSP20-(110-121) binds to actin/tropomyosin filaments, reduces actin-activated myosin S1 ATPase activity, and relaxes skinned swine carotid arterial smooth muscle (19). Importantly, this first hypothesis predicts that phosphorylated crossbridges would function normally once bound.

A second hypothesis is that Ser16-HSP20 phosphorylation disrupts the attachment of thin filaments to anchoring structures, a process that would interfere with force transmission along the thin filament rather than altering crossbridge interactions (4, 26). This second hypothesis predicts that there would be futile crossbridge cycling occurring when phosphorylated crossbridges bind to detached actin filaments.

In this manuscript, these two hypotheses were tested by comparing the mechanical characteristics of swine arterial smooth muscle with and without forskolin-induced force suppression and with and without latrunculin-A-induced actin filament disruption.

MATERIALS AND METHODS

Tissues. Physiological saline solution (PSS) contained (in mM): 140 NaCl, 4.7 KCl, 2 3-[N-morpholino]propane sulfonic acid, 1.2 Na2HPO4, 1.6 CaCl2, 1.2 MgSO4, 5.6 d-glucose, and 0.02 EDTA, pH adjusted to 7.4 at 37°C. Swine common carotid arteries were obtained and dissected, the endothelium was removed, and the ends were mounted in aluminum foil clips, bathed in PSS at 37°C, and set at L0, the optimal length for force development (20). Setting length at L0 involved two contractions with 109 mM extracellular K+ concentration ([K+]o) PSS where KCl was substituted stoichiometrically for NaCl. The second high [K+]o, was used to normalize all succeeding contractions (20).

Velocity measurements. Nineteen tissues from 19 different pigs had velocity measured by mounting one end of the tissue to an adjustable-length stationary rod and the other end to the lever arm of an Aurora Scientific model 310B dual-mode lever operated by Dynamic Muscle Control software (Aurora, Ontario, Canada). All

Address for reprint requests and other correspondence: C. M. Rembold, Box 800146, Cardiovascular Division, Univ. of Virginia Health System, Charlottesville, VA 22908-0146 (e-mail: crembold@virginia.edu).

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

http://www.ajpcell.org 0363-6143/07 $8.00 Copyright © 2007 the American Physiological Society C1003

releases were performed after setting tissue length to L_o as described above.

Fourteen tissues were evaluated for force suppression. After the equilibration, each tissue was stimulated with $10 \mu M$ histamine for 30 min to determine maximal force, and releases were performed. In the first nine tissues, releases were performed at 10-min intervals to loads of 2, 10, 20, and 40% in a random order (%loads were those entered in the Dynamic Muscle Control software). For the last five tissues, releases were performed alternately at 5-min intervals to loads of 10 and 40% starting before the tissue reached goal force and extending beyond goal force. This alternating protocol ensured that all releases were 5 min after a prior release, allowing for more accurate force matching (see RESULTS). The tissues, already contracted with $10 \mu M$ histamine, were relaxed with forskolin (concentration $0.19 \pm 0.03 \mu M$) so that sustained force was $\sim 50\%$ of the force induced by $10 \mu M$ histamine alone. This forskolin-induced force was called F_{match}. If force deviated $>20\%$ from F_{match}, then forskolin concentration was adjusted to attempt to reach F_{match}. After the releases, the histamine and forskolin were washed out for >30 min, and the tissue was recontracted to the same F_{match}, with whatever concentration of histamine was required. Releases were then performed in histamine alone. After treatments, tissue wet weight was measured.

Five tissues were evaluated for the effect of actin depolymerization with the alternating 10 and 40% release protocol. After the equilibration, each tissue was stimulated with $10 \mu M$ histamine for 30 min to determine maximal force, and releases were performed. The tissue was then contracted to $\sim 50\%$ of the force induced by $10 \mu M$ histamine alone with whatever concentration of histamine was required. This force was termed F_{match}. Releases were then performed. Histamine was washed out, and then the tissue was recontracted with $10 \mu M$ histamine and relaxed with $6 \mu M$ latrunculin-A to interfere with actin filament polymerization. Releases were then performed as force fell to near F_{match}. Because treatment with latrunculin-A inhibited all further contractions, the latrunculin exposure was always the last treatment.

Stiffness measurements. Stiffness, noise temperature, and hysteresivity were measured in nine tissues from nine different pigs with the same mounting, tissue length setting, and apparatus as the velocity experiment described above. Tissues were oscillated with sinusoidal amplitude length changes $(0.5\% L_o$ at 0.3, 1, 3, 10, and 30 Hz) and the resulting change in peak to peak force measured $(6, 9, 22)$. Stiffness was calculated as the peak-to-peak change in stress (force normalized to cross-sectional area) observed with 10-Hz oscillations $(14, 24)$. Noise temperature was calculated as $1 + \Sigma$-the least-squares regression slope of ln stiffness as a function of ln oscillation frequency. Hysteresivity was calculated from plots of the change in stress as a function of change in length during 1-Hz oscillations. The intercept of stress with zero on the length axis was calculated for both the stretch and release phase of the oscillation. Hysteresivity was then calculated as the difference between the stretch and release intercept normalized to mean stress (units are fractional).

Biochemical measurements. Crossbridge (Ser19-MRLC) phosphorylation was determined in swine common carotid artery rings mounted isometrically at 1.0 L_o and then treated to obtain similar forces as observed in the velocity and stiffness experiments described above. For Fig. 2, rings were then either (1) untreated (control), (2) activated by adding 10 μM histamine for 30 min, 3) activated by adding 10 μM histamine for 10 min and then relaxed by addition of 0.1–0.2 μM forskolin so sustained force was $\sim 50\%$ of 10 μM histamine force, or 4) activated by adding 10 μM histamine in PSS for 10 min, and then the histamine concentration was reduced so sustained force was $\sim 50\%$ of 10 μM histamine force. For Fig. 4, rings were treated similarly with the exception of treatment 3 in which rings were activated by adding 10 μM histamine for 10 min and then relaxed by addition of 6 μM latrunculin-A and waiting until sustained force was $\sim 50\%$ of 10 μM histamine force. At goal force, rings were then frozen in acetone dry ice and homogenized, and the level of crossbridge (Ser19-MRLC) phosphorylation was determined by isoelectric focusing and immunoblotting as described (22). Three dilutions of homogenates were loaded to ensure that the enhanced chemiluminescence detection system was in the linear range (21). Phosphorylation is reported as moles P$_i$ per mole protein.

RESULTS

Comparison of tissues with and without force suppression. A force lower than that expected for a given level of crossbridge phosphorylation is the definition of force suppression. The first goal of this study was to define whether force suppression was associated with either 1) high shortening velocity as would be expected by the higher crossbridge phosphorylation or 2) low shortening velocity as would be expected by the lower force. A high shortening velocity would suggest that crossbridge phosphorylation is still regulating crossbridge cycling and that force suppression does not involve abnormal crossbridge cycling. A lower shortening velocity would suggest that force suppression is altering the regulation of crossbridge cycling by crossbridge phosphorylation.

Fourteen swine carotid artery tissues were contracted twice to $\sim 50\%$ of maximal force with the following two protocols: 1) histamine alone at varying concentrations, i.e., without force suppression and 2) 10 μM histamine plus varying concentrations of forskolin, i.e., with force suppression. Tissues were then released to four loads, and the resulting shortening was measured. At matched force levels, the velocity at a lower load (mean 20%) was significantly faster with force suppression $(0.00563 \pm 0.00049 L_o/s, mean \pm 1$ SE) when compared to without force suppression $(0.00405 \pm 0.00036 L_o/s, P = 0.0015$ by paired t-test, velocity $1–2$ s after release with exponential curve fitting). The velocity at a higher load (mean 51%) did not significantly differ with force suppression $(0.00140 \pm 0.00019 L_o/s)$ when compared to without force suppression $(0.00132 \pm 0.00010 L_o/s, P = 0.6$ by paired t-test). These data suggest that force suppression was associated with more rapid shortening at lower loads as would be expected from the higher MRLC phosphorylation. Figure 1 shows the raw force velocity plot along with its linearized form of all data. Velocities at lower loads were higher with force suppression (histamine plus forskolin) than without force suppression (histamine at matched force). Velocities at higher loads were similar with and without force suppression.

When unloaded velocity was calculated from the initial nine experiments, the linearized Hill plots of the force suppression data did not fit the data well (Fig. 1, inset). The y-intercept of the linearized Hill plot produces a reasonable V_o for histamine alone, however, the y-intercept of the linearized Hill plot was near zero for force suppression, suggesting an unreasonably high calculated unloaded velocity. Upon further data analysis, there were two issues confounding the data: 1) the first release differed from subsequent releases and 2) force matching was less accurate with multiple releases. Because obtaining matched force with or without force suppression required a 60- to 90-min treatment, it was impractical to obtain data only on the first release. Therefore, the protocol was altered for the last five tissues such that a high and a low loaded release were performed alternately at 5-min intervals starting prior to force reaching the force matching value. This protocol permitted more precise force matching near $\sim 50\%$ and also ensured that all releases were performed 5 min after a prior release. Spe-
specifically, the variation (SD \div \text{mean}) of the force before release was 5.1% for the initial nine experiments and 0.49% for the final five experiments with the new protocol.

With this new alternating protocol, velocities were similar to the entire data set: at matched force levels, the velocity at the low load (17 \pm 0.07%) was significantly faster with force suppression (0.00048 \pm 0.00080 \text{L}_0/\text{s}, \text{mean} \pm 1 \text{SE}) than that observed without force suppression (0.00399 \pm 0.00046 \text{L}_0/\text{s}, \text{P} = 0.05 \text{by paired } \text{t-test}) The velocity at the high load (48 \pm 2.2%) did not significantly differ with force suppression (0.00143 \pm 0.00025 \text{L}_0/\text{s}) when compared to without force suppression (0.00126 \pm 0.00012 \text{L}_0/\text{s}, \text{P} = 0.5 \text{by paired } \text{t-test}).

Summary biochemical and mechanical data with and without force suppression are shown in Fig. 2. Resting tissues had low crossbridge phosphorylation (MRLCp), high noise temperature, high hysteresivity, low stiffness, and low stress (Fig. 2). Sustained 10 \mu M histamine-induced maximal stimulation was associated with high crossbridge phosphorylation, high velocity, low noise temperature, low hysteresivity, high stiffness, and high stress (Fig. 2). Figure 2 also shows the two force-matched states with and without force suppression. Force suppression (histamine plus forskolin; Fig. 2) was associated with significantly higher crossbridge phosphorylation and shortening velocity at low load when compared to tissues without force suppression (histamine alone, Fig. 2). Shortening velocity at high load, noise temperature, hysteresivity, stiffness, and stress did not differ with and without force suppression.

The dependence of velocity on crossbridge (MRLCp) phosphorylation is shown in Fig. 3. Velocity was linearly dependent on crossbridge phosphorylation (Fig. 3, top), a result similar to prior studies (15). These data are consistent with the hypothesis that crossbridge phosphorylation regulates crossbridge cycling as measured by shortening velocity.

Comparison of tissues with and without actin disruption. Five swine carotid artery tissues were contracted three times: 1) with maximal histamine (10 \mu M), 2) with histamine alone at varying concentrations to \sim50% of 10 \mu M histamine-induced force, i.e., without actin disruption, and 3) with 10 \mu M histamine plus 6 \mu M latrunculin-A to \sim50% of 10 \mu M histamine-induced force, i.e., with actin disruption. Tissues were then alternately released to low and high loads (similar protocol to the last 5 tissues with force suppression). Summary biochem-
The mechanism responsible for force suppression likely involves inhibition of phosphorylated crossbridge binding to thin filaments. This study evaluated two alternative hypotheses. The first was that force suppression involves inhibition of phosphorylated crossbridge binding to thin filaments, a process that would reduce force despite high crossbridge (MRLC) phosphorylation values. The second hypothesis was that force suppression involves disruption in the attachment of thin filaments to anchoring structures, a process that would interfere with force transmission along the thin filament. Overall, the data support the first hypothesis: 1) If force suppression invol-
creased futile cycling of those crossbridges that attach to disrupted thin filaments. Such futile crossbridge cycling would increase ATP utilization and therefore increase oxygen consumption beyond that expected by the force level. However, nitroglycerin-induced force suppression in swine carotid artery was associated with low oxygen consumption as expected by the reduced stress (19). This finding of low oxygen consumption during force suppression is consistent with the first hypothesis in which reduced crossbridge attachment would be expected to reduce ATP utilization. 4) It is known that agonist-induced contraction increased the F-actin content in both tracheal and swine carotid artery (12, 13), suggesting that contraction is associated with actin polymerization. If the second hypothesis were true, then force suppression may be associated with actin depolymerization (i.e., a decreased F-actin content). However, in the swine carotid artery, force suppression was not associated with a reduction in F-actin content when compared with histamine stimulation alone (12). This result suggests that actin depolymerization does not occur with force suppression, a result supporting the first hypothesis. The finding that noise temperature and hysteresivity did not differ with and without force suppression also appears to support this hypothesis; however, the lack of an effect of latrunculin-A on noise temperature and hysteresivity suggests that these measures may not be sensitive enough measures at this force level (see below). 5) Finally, the dependence of relaxation on Ser16-HSP20 phosphorylation is linear with force suppression (12). If force suppression were to disrupt entire thin filaments, a sigmoidal dependence of relaxation on Ser16-HSP20 phosphorylation (Fig. 3). This result suggests that crossbridge cycling at low loads is not altered by force suppression. How then does force suppression reduce force? Evaluation of the entire force-velocity relationship could potentially help to explain this confusing result (Fig. 6). A calculation with only two points is not ideal; however, as noted in the results section, poor force matching with multiple releases appeared to result in unphysiologically high calculated Vo. With better force matching, Fig. 6 shows that the higher V at low loads predicted a higher Vo with force suppression compared to without force suppression.

This result could be fit by a hypothesis in which F0 (isometric force) was reduced during force suppression because there were fewer “active” crossbridge binding sites for phosphorylated crossbridges to bind and produce force and/or shortening at high loads. A reduction in active crossbridge binding sites with force suppression could produce “substrate depletion” for crossbridge binding (here actin is the “substrate” for crossbridges binding). Depletion of active crossbridge binding sites would be most apparent during the relatively slow shortening present when the load is high, since a large number of bound crossbridges are required to produce force; crossbridges would need to rebind frequently given shortening at high loads. This explains the similar velocity at higher loads despite higher crossbridge phosphorylation during force suppression. Substrate depletion would not alter velocity as much at lower loads, since binding of only a small number of phosphorylated crossbridges is required to produce rapid shortening at lower loads. This allows the higher crossbridge phosphorylation during force suppression to produce high unloaded and low-load velocity (Figs. 1, 2, and 6). This hypothesis is
consistent with the hypothesis that Ser\(^{16}\) phosphorylated HSP20 binds to and inactivates thin filaments so that some of the phosphorylated crossbridges are unable to attach, a process that would reduce force despite high crossbridge phosphorylation values (12, 19).

The mechanism of reduced force with actin disruption. With latrunculin-A-induced actin disruption, shortening velocity and stress were similar to that produced by histamine alone despite higher crossbridge phosphorylation (Fig. 6). This result is explained by a hypothesis in which actin disruption produces some thin filaments that are not attached to anchoring structures so that phosphorylated crossbridges attaching to these detached filaments would not induce shortening, stiffness, or stress.

It should not be assumed that all of the effects of latrunculin-A are caused by a direct effect on crossbridge interactions. Cytochalasin B and D, agents that reduce actin polymerization like latrunculin-A, attenuated carbachol-induced increases in \([Ca^{2+}]_{i}\), crossbridge phosphorylation, and contraction in bovine trachealis (27), suggesting that actin polymerization may be involved in regulation of \(Ca^{2+}/\text{crossbridge phosphorylation}\). Our data did not show a statistically significant decrease in crossbridge phosphorylation when comparing 10 \(\mu\)M histamine alone with 10 \(\mu\)M histamine plus 6 \(\mu\)M latrunculin-A \((P = 0.22)\); however, the relation of crossbridge phosphorylation and force is steep (23) so that small decreases in crossbridge phosphorylation will decrease force significantly. It is possible that the lack of a significant decrease in crossbridge phosphorylation is a type 2 error.

Implications of noise temperature and hysteresivity. With both force suppression and latrunculin-A-induced actin disruption, noise temperature and hysteresivity were similar to that produced by histamine alone at the same stress (Figs. 2 and 4). This appears to suggest that both force suppression and latrunculin-A did not alter cell rheology as measured by noise temperature and hysteresivity. However, preliminary results from our laboratory suggest that most of the change in steady-state noise temperature and hysteresivity occurs when force varies from resting to \(\sim 50\%\) of maximal (22A). There was only a small change in noise temperature and hysteresivity when force increases from 50 to 100% of maximal values. These data suggest that noise temperature and hysteresivity may not be sensitive enough measures to detect changes in cell rheology with either force suppression or actin disruption occurring when force is reduced by only 50%. Further study of noise temperature and hysteresivity at lower stress levels with force suppression and actin disruption are the subject of further study.

Force suppression and actin disruption do not alter the mechanics of crossbridges once bound. Stiffness was linearly dependent on stress with all treatment protocols (Fig. 5), suggesting that the force per attached crossbridge was not altered with force suppression or actin disruption.

Conclusion. These data suggest that there is a difference in the mechanical characteristics observed during force suppression and actin disruption. This suggests that force suppression does not mechanismically involve actin disruption. Force suppression appears to involve the inhibition of phosphorylated crossbridge binding to thin filaments.

ACKNOWLEDGMENTS

The technical assistance of Melissa Meeks, Shaojie Han, and Marcia Ripley for biochemical assays is appreciated. Arteries were donated by Smithfield, a division of Gwaltney.

GRANTS

This research was supported by National Heart, Lung, and Blood Institute Grant HL-71191.

REFERENCES

