Potent block of inactivation-deficient Na+ channels by n-3 polyunsaturated fatty acids

Yong-Fu Xiao, Li Ma, Sho-Ya Wang, Mark E. Josephson, Ging Kuo Wang, James P. Morgan, and Alexander Leaf

Address for reprint requests and other correspondence: A. Leaf, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129 (e-mail: aleaf@partners.org).

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
MATERIALS AND METHODS

Cell culture and transfection of cardiac Na\(^+\) channels. HEK-293t cells were grown to ~50% confluence, transfection of the wild-type cardiac Na\(^+\) channel (hNav1.5; 4 μg) or a mutant (3 μg) of the α-subunit of the human cardiac Na\(^+\) channel (hH1) plus the rat Na\(^+\) channel β1-subunit (20 μg) and CD8 cDNA (1 μg) was performed using a calcium phosphate precipitation method (20, 21). Expression of Na\(^+\) channels was adequate for current recording. The transfected cells were replated 15 h after transfection in 35-mm dishes (which also served as recording chambers) and were incubated at 37°C in a 5% CO\(_2\) incubator. Transfection-positive cells were identified using immunobeads (CD8-Dynabeads M-450; Dynal, Oslo, Norway).

Recording of cardiac \(I_{Na}\). HEK-293t cells coated with CD8 beads were chosen for patch-clamp studies. The pipette solution contained (in mM) 100 CsCl, 40 CsOH, 1 MgCl\(_2\), 1 CaCl\(_2\), 11 EGTA, 5 MgATP, and 10 HEPES, pH 7.3 with CsOH. The bath solution contained (in mM) 30 NaCl, 100 N-methyl-d-glucamine, 1 MgCl\(_2\), 2 CaCl\(_2\), 10 HEPES, and 10 glucose (pH adjusted to 7.4 with HCl). Glass electrodes (World Precision Instruments, Sarasota, FL) had a resistance of ~1 MΩ when filled with the pipette solution. Whole-cell current was recorded according to experimental protocols similar to those used in our previous study (20). Fatty acids (Sigma) were dissolved weekly in 100% ethanol at 10 mM concentration and stored in a nitrogen atmosphere at −20°C before use. The experimental concentration of fatty acids was obtained by diluting the stocks and contained a negligible amount of ethanol, which alone had no effect on the mutated \(I_{Na}\). Extracellular solution with various concentrations of fatty acids was exchanged with a rapid perfusion system (18). Experiments were conducted at 22−23°C.

Statistical analysis. \(I_{Na}\) values were measured at the points of maximal activated current (\(I_{Na}^{peak}\)) and residual current near the end of each test pulse (\(I_{Na}^{late}\)). Activation and steady-state inactivation curves were fitted using a Boltzmann equation, \((1/[1 + \exp(V_{1/2} - V/k)])\), in which \(V_{1/2}\) is the midpoint voltage of the function and \(k\) is the slope factor (in mV/fold change in current). Concentration-dependent data were fitted using a logistical equation, \((1/(A_1 + A_2/[1 + (x/x_0)^p] + A_2))\), in which \(x_0\) is the center, \(p\) is power, \(A_1\) is initial y-axis value, and \(A_2\) is final y-axis value. The time constant (\(\tau\)) of inactivation was analyzed using least-squares fitting (\(y = A_0 + A_1 \exp(-x^t\tau)\)) (Origin version 6.0 software; Microcal Software, Northampton, MA) with a single exponential function. Data are presented as means ± SE. Results derived from two groups were analyzed using the unpaired Student’s t-test. Statistical differences among the results obtained from three or more experimental groups were determined using ANOVA. \(P < 0.05\) was set as the level for statistical significance.

RESULTS

Voltage-gated, inactivation-deficient \(I_{Na}\). Voltage-activated, persistent \(I_{Na}\) with fast activation and incomplete inactivation were evoked using depolarizing pulses from −90 mV to 50 mV in HEK-293t cells transiently transfected with the mutant L409C/A410W of hH1α plus β1-subunit (L409C/A410W + β1) (Fig. 1A). More than 65% of persistent \(I_{Na}\) were observed at the end of 400-ms test pulses in HEK-293t cells transfected with inactivation-deficient mutants plus β1-subunits, whereas
wild-type I_{Na} were almost completely inactivated at the end of 40-ms test pulses (wild-type $\alpha + \beta_1$) (Fig. 1A). I_{Na} were activated at approximately -60 mV and reached maximal amplitude at -30 mV for both the mutant and wild-type hH1α. To compare the current-voltage relationships between the mutant and the wild-type cardiac Na$^+$ channels, the peak I_{Na} amplitudes were normalized to their corresponding maximal currents and plotted against different voltages. Figure 1B shows the similarities in the current-voltage relationship curves of the inactivation-deficient mutant ($n = 15$) and the wild type ($n = 7$) of hH1α plus β_1-subunits. Normalized whole cell activation conductance curves calculated from peak I_{Na} remained comparable between the L409C/A410W mutant and wild-type hH1α (Fig. 1C). The average $V_{1/2}$ and k (slope) values for the fitted functions were -42.2 ± 0.17 mV and 8.6 ± 0.30 mV, respectively, for the mutant ($n = 15$) and -43.0 ± 0.11 mV and 6.1 ± 0.09 mV, respectively, for the wild type ($n = 7$) ($P > 0.05$). These results demonstrate that the double mutations at the 409 and 410 sites in the D1–S6 region of hH1α Na$^+$ channels induce inactivation-deficient channels with persistent I_{Na}, but the activation process is not altered.

The effects of the L409C/A410W mutant on fast steady-state inactivation were examined by measuring the amplitude of peak currents evoked using a two-pulse protocol. The average $V_{1/2}$ of the fast steady-state inactivation curve for the wild type was -76.1 ± 1.1 mV with a k value of 5.0 ± 0.5 mV ($n = 9$). The wild-type hH1α Na$^+$ channels were completely inactivated when the prepulse voltages were depolarized to more than -50 mV (Fig. 2C). In contrast, the double mutations at the 409 and 410 sites of hH1α significantly shifted the $V_{1/2}$ of the steady-state inactivation in the hyperpolarization direction with a $V_{1/2}$ value of -90.6 ± 1.7 mV ($n = 17$, $\Delta = -14.5$ mV) ($P < 0.05$) (Fig. 2C) and a k value of 9.7 ± 1.0 mV. A significant portion of noninactivated currents of L409C/A410W mutant Na$^+$ channels was observed when prepulse voltages were depolarized to more than -50 mV and even up to 80 mV (Fig. 2C). These results suggest that the hH1α mutant induces a significant hyperpolarizing shift of steady-state inactivation and generates a significant portion of noninactivated currents even at positive prepulse voltages.

Inhibitory effects of EPA on long-lasting, persistent I_{Na} Our recent studies showed (19, 20) that the n-3 PUFA s significantly suppressed I_{Na} in HEK-293t cells transfected with hH1α Na$^+$ channels. To determine whether the n-3 PUFA s inhibited the long-lasting, persistent I_{Na}, we investigated the effects of EPA on I_{Na} in HEK-293t cells transfected with the mutant L409C/A410W of hH1α plus β_1-subunits. Extracellular application of 5 µM EPA significantly inhibited both I_{Na} peak and I_{Na} late within 10 s and reached the maximal effect within 7 min (Fig. 3). I_{Na} returned to the pretreatment level after washout of EPA with 0.2% fatty acid-free BSA solution. Figure 3 shows the time course of inhibitory effects of 5 µM EPA on I_{Na} peak and I_{Na} late in a HEK-293t cell expressing L409C/A410W plus β_1-subunits. I_{Na} late was more sensitive to the inhibitory effect of EPA and was almost completely inhibited, whereas I_{Na} peak was inhibited by 60%.

The inhibitory effect of EPA on the mutant channel was concentration dependent. The IC$_{50}$ of EPA for I_{Na} peak of the inactivation-deficient mutant and wild-type hH1α plus β_1-subunits in HEK-293t cells was similar: 4.0 ± 0.4 µM for L409C/A410W and 3.9 ± 0.3 µM for the wild type, respectively. However, I_{Na} late of the mutant was more sensitive to EPA, with IC$_{50}$ of 0.9 ± 0.1 µM (Fig. 4).

Effects of EPA on activation and inactivation of I_{Na} To evaluate the effects of EPA on the activation of the mutant channel, I_{Na} were activated in the absence or presence of 5 µM EPA (Fig. 5). I_{Na} peak was profoundly inhibited, and I_{Na} late was almost completely suppressed (Fig. 5B). The inhibition was reversible after washout of EPA with bath solution containing 0.2% BSA (Fig. 5C). The current-voltage relationship of I_{Na} peak (Fig. 5D) or I_{Na} late (Fig. 5F) was not altered in the presence of 5 µM EPA. The current traces of L409C/A410W showed phenotypic restoration of the inactivation property in the presence of EPA (Fig. 5B). The activation curves of I_{Na} peak were calculated from normalized conductance and were superimposed in the absence or presence of 5 µM EPA ($n = 8$; $P >$ 0.05). These results demonstrate that the double mutations at the 409 and 410 sites in the D1–S6 region of hH1α Na$^+$ channels are important for the inactivation-deficient mutant hH1α.
0.05) (Fig. 5E). The 50% channel availability of activation data were 43.3 ± 0.28 mV with a k value of 7.1 ± 0.31 mV for the control and 42.6 ± 0.15 mV with a k value of 6.8 ± 0.12 mV for 5 μM EPA.

Figure 6 shows the effects of EPA on inactivation of I_{Na} in HEK-293t cells transfected with the wild-type or inactivation-deficient mutant of hH1 plus β_1-subunits. I_{Na} were elicited using the same protocol shown in Fig. 1. Compared with wild-type hH1 plus β_1-subunits ($n = 6$) (Fig. 6), inactivation τ values of I_{Na} were significantly prolonged in HEK-293t cells transfected with inactivation-deficient Na$^+$ channels (Fig. 6) ($n = 19$). The inactivation τ of the mutated currents elicited by pulses in a range from -25 mV to 40 mV were significantly reduced in the presence of 5 μM EPA (Fig. 6) ($n = 12$). The decreased inactivation τ of I_{Na} of the mutant in the presence of EPA, however, were still much greater than those of wild-type I_{Na}. The effects of 5 μM EPA on the inactivation were not obvious for wild-type I_{Na} (Fig. 6) ($n = 6$). These results suggest that EPA enhances phenotypic inactivation of inactivation-deficient Na$^+$ channels but not that of the wild type.

To evaluate the effects of EPA on fast steady-state inactivation of mutant, persistent I_{Na} were elicited using a double-pulse protocol (Fig. 7, A and B). The steady-state inactivation curve in the absence of EPA showed the noninactivated persistent portion (~25%) of I_{Na} peak with prepulses depolarized...
significantly shifted the steady-state inactivation of back toward the control. These results demonstrate that EPA BSA solution, the steady-state inactivation curve was shifted P/H_{9261}, whereas P/H_{9262} to P/H_{9262} of P/H_{9262} P/H_{9262} concentration did not significantly alter activation curves P/H_{9262} P/H_{9262} Na peak measured near end of each pulse in control (A) and EPA conditions (E). P/H_{9262} almost completely inhibited. Current recovered after EPA washout (C). D: current-voltage relationship showing significant inhibition of average I_{Na} peak in presence of $5 \mu M$ EPA ($n = 8$). P/H_{9262} relative whole cell activation conductance of I_{Na} peak in absence (A) and presence of $5 \mu M$ EPA (B). EPA at $5 \mu M$ concentration did not significantly alter activation curves of I_{Na} peak ($n = 8$). P/H_{9262}: effects of $5 \mu M$ EPA on I_{Na} late measured near end of each pulse in control (C) and EPA conditions (F). I_{Na} late was inhibited almost completely by $5 \mu M$ EPA (B and F), whereas I_{Na} peak was inhibited ~50% (B and D). Data in P/H_{9262} were fitted using a Boltzmann equation.

above ~50 mV, which inactivated all wild-type Na$^{+}$ channels (Fig. 2C). Extracellular perfusion of $5 \mu M$ EPA significantly reduced I_{Na} peak, including complete inhibition of the noninactivated persistent portion (Fig. 7, B and C). The normalized steady-state inactivation curve of I_{Na} peak was significantly shifted to the negative direction in the presence of $5 \mu M$ EPA. The $V_{1/2}$ of the steady-state inactivation curve was shifted from -90.3 ± 1.7 mV for the control ($k = 9.6 \pm 1.1$ mV, $n = 16$) to -109.3 ± 0.5 mV for EPA ($k = 10.1 \pm 0.4$ mV, $n = 9$) ($P < 0.001$). After washout of EPA with 0.2% fatty acid-free BSA solution, the steady-state inactivation curve was shifted back toward the control. These results demonstrate that EPA significantly shifted the steady-state inactivation of I_{Na} peak by ~19 mV, which is similar to our previous finding of a ~22-mV shift for the wild-type hH1$alpha$ Na$^{+}$ channel (20). In addition, EPA eliminates the noninactivated persistent portion of the steady-state inactivation curve of the mutant channel.

Development of resting inactivation of I_{Na}o. Resting inactivation of voltage-gated cardiac Na$^{+}$ channels is referred to as direct transition of the resting state to the inactivated state without opening of the channel (3, 7, 9). To assess the effects of L409C/A410W double mutations on the development of resting inactivation of the mutant (Fig. 8A), we selected ~65 mV as the conditioning voltage because this depolarization level was enough to inactivate the channels with minimal channel activation. Figure 8B shows that the amplitudes of I_{Na} dramatically decreased as the duration (Δt) of conditioning pulses was prolonged, indicating that an increasing proportion of channels was entering the inactivated state. However, an ~50% portion of I_{Na} was not inactivated even with the longest conditioning pulse tested, 120 ms (Fig. 8C) ($n = 5$), at which the I_{Na} of wild-type hH1$alpha$ Na$^{+}$ channels were completely inactivated (Fig. 8C). Our results indicate that the L409C/A410W mutant of the hH1$alpha$ Na$^{+}$ channel significantly alters the development of resting inactivation and induces a significant portion of noninactivated currents.

To assess the effects of EPA on the development of resting inactivation of the L409C/A410W mutant, the same conditioning pulses as those described above were applied. In the presence of $5 \mu M$ EPA, increases in the duration of conditioning pulses enhanced the portion of mutant channels into a resting inactivated state (Fig. 8B), whereas the fitting slope (Fig. 8C) was similar to that found in the absence of EPA (Fig. 8C). Compared with control, only ~15% of mutant channels in the presence of EPA were not inactivated when the duration of the conditioning pulse was set at 120 ms (Fig. 8C). The slope of the resting inactivation of the mutant was superimposed with that of the wild-type Na$^{+}$ channel in the presence of $5 \mu M$ EPA (Fig. 8C), except for the noninactivated portion of the mutant. The data suggest that the double mutations of hH1$alpha$ result in incomplete resting inactivation of the channel and that EPA decreases the noninactivated portion of the current.
Delayed recovery from inactivation of \(I_{\text{Na}} \) by EPA. To determine whether the mutations at the 409 and 410 sites of hH1\(\alpha \) affect recovery from resting inactivation, the available currents elicited by 50-ms test pulses to \(-30\) mV were measured (Fig. 9, A and B). The \(\Delta \) recovery from inactivation of \(I_{\text{Na peak}} \) was fitted using a single exponential function (Fig. 9C). The \(\tau \) for recovery from inactivation of the mutant current was 600.7 \pm 48.0 ms for control (\(A_1 = -1.04 \)) (Fig. 9C) and 927.1 \pm 54 ms for 5 \(\mu \)M EPA (\(A_1 = -1.05 \)) (Fig. 9C) (\(n = 5 \); \(P < 0.01 \)). Compared with the mutant, the \(\tau \) values for wild-type hH1\(\alpha \) Na\(^{+}\) channels were significantly (\(P < 0.01 \)) smaller: 10.8 \pm 1.8 ms for control (\(A_1 = -0.96 \)) (Fig. 9C) and 120.0 \pm 13.6 ms for 5 \(\mu \)M EPA (\(A_1 = -0.81 \)) (Fig. 9C) (\(n = 8 \)). These results indicate that the mutations of L409C/A410W delays recovery from resting inactivation and that EPA further slows recovery.

Effects of other fatty acids on \(I_{\text{Na}} \). To evaluate the effects of other saturated or unsaturated fatty acids on mutant channels, docosahexaenoic acid (DHA; C22:6n-3, \(n = 10 \)), linoleic acid (LA; C18:2n-6, \(n = 6 \)), arachidonic acid (AA; 20:4n-6, \(n = 12 \)), and linoleic acid (LA; C18:2n-6, \(n = 5 \)) were evaluated in HEK-293t cells transfected with the inactivation-deficient mutant of hH1\(\alpha \) plus \(\beta_1 \)-subunits. Figure 10 shows that extracellular application of one of the PUFAs at 5 \(\mu \)M concentration significantly blocked the mutant channel. In contrast, the monounsaturated fatty acid oleic acid (OA; C18:1n-9, \(n = 6 \)) or either of the saturated fatty acids stearic acid (SA; C18:0, \(n = 6 \)) or palmitic acid (PA; C16:0, \(n = 9 \)) at 5 \(\mu \)M concentration had no significant inhibitory effect on the mutant channel in HEK-293t cells. These results are consistent with our previous findings that only PUFAs, not monounsaturated or saturated fatty acids, have inhibitory effects on cardiac \(I_{\text{Na}} \) (19, 20).

DISCUSSION

The main findings of this study are that the mutant L409C/A410W of the \(\alpha \)-subunit of human cardiac Na\(^{+}\) channels causes a long-lasting, persistent \(I_{\text{Na}} \) and that n-3 PUFAs significantly inhibited \(I_{\text{Na}} \) in HEK-293t cells transfected with the inactivation-deficient mutant. The effect of PUFAs on \(I_{\text{Na late}} \) was even greater than that on \(I_{\text{Na peak}} \) (Figs. 3, 5, and 7). The persistent \(I_{\text{Na}} \) current has been observed in adult mammalian ventricular cardiomyocytes (14), and hypoxia has been shown to enhance its amplitude (5). Increased Na\(^{+}\) influx due to hypoxia increases intracellular Na\(^{+}\) concentration ([Na\(^{+}\)]i), which in turn activates the reversal mode of the Na\(^{+}\)/Ca\(^{2+}\) exchanger so that intracellular Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]i) level increases as well. An increase in the persistent \(I_{\text{Na}} \) and [Ca \(^{2+}\)]i level can cause arrhythmias and irreversible cell damage (5). Blockade of voltage-gated Na\(^{+}\) channels has long been accepted as an effective therapy for patients with many types of cardiac arrhythmia. A recent study showed that blocking persistent \(I_{\text{Na late}} \) in ventricular cardiomyocytes of patients with heart failure ceased soon after depolarization (10). The inhibition of \(I_{\text{Na late}} \) by n-3 PUFAs thus might have potential therapeutic value in certain patients with ischemia-induced arrhythmia.

Traditional local anesthetics act on common structural determinants at the D4–S6 segment of the Na\(^{+}\) channel \(\alpha \)-subunit (13). Certain mutations (F1760K and Y1767K) in this region of hH1\(\alpha \) Na\(^{+}\) channels were found eliminate the inhibitory effects of lidocaine and cocaine on cardiac \(I_{\text{Na}} \) in HEK-293t cells transfected with these mutants, but they did not alter the inhibition of \(I_{\text{Na}} \) by n-3 PUFAs. In contrast, the mutant N406K in the D1–S6 region greatly attenuated the effects of the n-3 PUFAs on cardiac \(I_{\text{Na}} \) (21). These results indicate that EPA may bind to a region (D1–S6) different from the one to which local anesthetics bind (D4–S6).

Because the sites of the mutant L409C/A410W are close to N406, EPA might possibly bind to a region near the mutation which local anesthetics bind (D4 –S6). EPA may bind to a region (D1–S6) different from the one to which local anesthetics bind (D4 –S6).
Fig. 7. Effects of EPA on the fast steady-state inactivation of persistent \(I_{\text{Na}} \) in HEK-293t cells. Superimposed original current traces in absence (A, Control) or presence of 5 \(\mu \text{M} \) EPA (B) were elicited using 200-ms test pulses to \(-30 \text{ mV}\) after 500-ms conditional prepulses that we varied from \(-160 \text{ mV}\) to \(+30 \text{ mV}\) in 10-mV increments. Membrane holding potential of cells was \(-90 \text{ mV}\), and pulse rate was 0.1 Hz. Dotted lines in A and B represent zero current. C: normalized \(I_{\text{Na,peak}} \) of fast steady-state inactivation averaged in absence \((\cdot)\) or presence of 5 \(\mu \text{M} \) EPA \((\bullet, n = 16)\). Steady-state inactivation curve was significantly shifted in the hyperpolarizing direction. In the presence of 5 \(\mu \text{M} \) EPA, \(I_{\text{Na,peak}} \) was inhibited by 50% with prepulses from \(-160 \text{ mV}\) to \(-130 \text{ mV}\) and was suppressed almost completely with prepulses more positive than \(-70 \text{ mV}\) (relative inhibition). Data in C were derived using a Boltzmann equation. A portion \((-25\%)\) of \(I_{\text{Na,peak}} \) in absence of EPA was not inactivated even with highly depolarized prepulses, but EPA at 5 \(\mu \text{M} \) concentration abolished the noninactivated portion almost completely.

Fig. 8. Development of resting inactivation of mutated \(I_{\text{Na}} \) by EPA. A: voltage-pulse protocol was composed of a prepulse from holding potentials of \(-150 \text{ mV}\) to \(-65 \text{ mV}\) with increasing durations, followed by 50-ms test pulse to \(-30 \text{ mV}\). B: original current traces of \(I_{\text{Na}} \) elicited by prepulses at time 0 and at 10, 20, and 120 ms in absence (Control) or presence of 5 \(\mu \text{M} \) EPA. C: development of resting inactivation of mutated Na\(^+\) channel in absence (\(\cdot\) Control) and presence of 5 \(\mu \text{M} \) EPA (\(\bullet, n = 5\)). Time courses of resting inactivation in the mutant were fitted using a single-exponential decay function. Resting inactivation \(\tau \) of mutated \(I_{\text{Na}} \) were \(6.5 \pm 0.02 \text{ ms}\) for control \((\cdot, A_1 = 0.47)\) and \(6.9 \pm 0.03 \text{ ms}\) for 5 \(\mu \text{M} \) EPA \((\bullet, A_1 = 0.84)\) \((n = 5)\). Dotted and dashed lines represent resting inactivation of wild-type \(I_{\text{Na}} \) in absence or presence of 5 \(\mu \text{M} \) EPA with \(\tau \) (fitted using a single exponential function) of \(32.8 \pm 0.14 \text{ ms}\) \((A_1 = 1.05)\) for control (dotted line) and \(8.5 \pm 0.06 \text{ ms}\) \((A_1 = 1.06)\) for 5 \(\mu \text{M} \) EPA (dashed line). \(n = 7; P < 0.05 \) vs. control.
The antiarrhythmic drug flecainide also inhibited the mutant current without altering the activation of inactivation-deficient mutants of skeletal muscle Na/H11001 channels (15). EPA, however, significantly shifted the steady-state inactivation of the mutant I_Na by 19 mV, which is similar to our previous finding of a 22-mV shift for wild-type hH1 plus H9251 plus H9252-subunits of Na/H11001 channels (20). Typically, this action is limited to PUFAs and is not produced by monounsaturated or saturated fatty acids as shown in Fig. 10 (19, 20).

It seems that any cardiac dysfunction that results in prolonged I_Na enhances the opportunity for cardiac arrhythmias to occur. Long QT-3 syndromes, e.g., LQT-3/ΔKPQ, have persistent I_Na late (12). Patients with these presentations, too, might potentially benefit from treatment with n-3 fatty acids, which block persistent I_Na late. After binding, the fatty acids may block Na/H11001 channels or induce the channels to enter an inactive state and stabilize. The ability to inhibit persistent I_Na and stabilize Na/H11001 channels in their inactivated state has clinical implications for potential therapeutic use of fish oil n-3 PUFAs.
Arrhythmias that arise from enhanced persistent I_{Na} in patients with ischemia can cause sudden cardiac death (5). We have shown that the n-3 PUFAs, by blocking persistent I_{Na}, may be able to prevent these fatal arrhythmias as has been shown in clinical trials (1, 11). The beneficial effects of n-3 PUFAs on certain cardiac arrhythmias may result from the inhibition of persistent I_{Na} by enhancement of channel inactivation and stabilization of the inactivation gate.

The results of the present study indicate that the blocking action of fish oil n-3 PUFAs on Na$^+$ channels in a mutant produced an inactivation-deficient channel, presumably by disabling the receptor of the inactivation particle, so that the inactivation particle was unable to close the Na$^+$ channel. The intracellular linker between domains 3 and 4 is known to be essential for the fast inactivation of the Na$^+$ channel, and deletion of this region also causes persistence of I_{Na} during depolarization (2). We do not know whether the n-3 PUFAs have any or no blocking effect on a disabled, inactivated Na$^+$ channel such as that produced in the mutant IFM/3Q and did not address that issue in this study.

ACKNOWLEDGMENTS

We thank Dr. R. G. Kallen for the hH1a clone, Drs. L. L. Isom and W. A. Catterall for the rat brain β1-subunit clone, and Dr. S. C. Cannon for the CD8 clone and the HEK-293t cell line.

Present address of Y.-F. Xiao: Cardiac Rhythm Management, Medtronic, 7000 Central Ave. NE, Minneapolis, MN 55432.

GRANTS

This study was supported in part by American Heart Association Research Grant 9930254N (to Y.-F. Xiao), National Heart, Lung, and Blood Institute Grant HL-62284 (to A. Leaf), National Institute on Aging Grant DA-11762 (to A. Leaf), National Institute of General Medical Sciences Grant GM-48090 (to G. K. Wang).

REFERENCES