Voltage dependence of the coupling of Ca$^{2+}$ sparks to BK$_{Ca}$ channels in urinary bladder smooth muscle

Gerald M. Herrera, Thomas J. Heppner, and Mark T. Nelson

Departments of Molecular Physiology and Biophysics and Pharmacology, University of Vermont College of Medicine, Burlington, Vermont 05405

Received 11 August 2000; accepted in final form 2 October 2000

Herrera, Gerald M., Thomas J. Heppner, and Mark T. Nelson. Voltage dependence of the coupling of Ca$^{2+}$ sparks to BK$_{Ca}$ channels in urinary bladder smooth muscle. Am. J. Physiol. Cell Physiol. 280: C481–C490, 2001.—Large-conductance Ca$^{2+}$-sensitive, voltage-dependent Ca$^{2+}$ channels (VDCCs) (11). BK$_{Ca}$ channels are also activated by Ca$^{2+}$ release, in the form of Ca$^{2+}$ sparks. Ca$^{2+}$ sparks are local Ca$^{2+}$ transients caused by the opening of ryanodine-sensitive Ca$^{2+}$ release channels [referred to as ryanodine receptors (RyRs)] in the sarcoplasmic reticulum (SR) membrane (22). In smooth muscle cells from rat cerebral arteries, every Ca$^{2+}$ spark activates nearby BK$_{Ca}$ channels to cause a transient K$^+$ current (24). In this preparation, each Ca$^{2+}$ spark increases the open probability of BK$_{Ca}$ channels 104–106-fold, indicating that the Ca$^{2+}$ spark delivers 10–100 μM Ca$^{2+}$ to the nearby BK$_{Ca}$ channels (1, 24).

Another potentially important effect of membrane potential depolarization is to increase the apparent Ca$^{2+}$ sensitivity of the BK$_{Ca}$ channel (5, 6). This effect could theoretically increase the impact of Ca$^{2+}$ sparks on BK$_{Ca}$ channel activity, such that a given-size Ca$^{2+}$ spark causes a larger BK$_{Ca}$ current transient at depolarized potentials.

Ca$^{2+}$ sparks have recently been described in UBSM. Collier and co-workers (4) observed a process whereby Ca$^{2+}$ sparks in UBSM are evoked by Ca$^{2+}$ entry through VDCCs. However, unlike classical Ca$^{2+}$-induced Ca$^{2+}$ release in cardiac muscle, which occurs on the millisecond time scale (3), this process in UBSM was relatively slow and could be attributed to the accumulation of Ca$^{2+}$ through activation of VDCCs, rather than local control by Ca$^{2+}$ entry through a single VDCC (4).

Although membrane potential is thought to regulate the coupling of Ca$^{2+}$ sparks to BK$_{Ca}$ channels in smooth muscle, little is known about this important relationship. Membrane potential depolarization could act on the BK$_{Ca}$ channels by increasing the driving force for K$^+$, increasing channel open probability, and by increasing channel Ca$^{2+}$ sensitivity. Membrane potential could indirectly affect BK$_{Ca}$ channel activity by altering Ca$^{2+}$ spark frequency and amplitude.

The primary goal of the present study is to understand the effect of voltage on the coupling of Ca$^{2+}$ sparks to BK$_{Ca}$ channels. To accomplish this, we characterize Ca$^{2+}$ sparks in UBSM and provide the first characterization of the effect of membrane potential on

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
the coupling of Ca2+ sparks to BK\textsubscript{Ca} channels by simultaneously measuring Ca2+ sparks and K+ currents in isolated UBSM cells. We provide the first evidence that voltage modulates the strength of coupling of Ca2+ sparks to BK\textsubscript{Ca} channels, such that Ca2+ sparks cause larger BK\textsubscript{Ca} currents as the membrane potential is depolarized. The results can be explained by the voltage dependence of the Ca2+ sensitivity of BK\textsubscript{Ca} channels and provide a mechanism for enhanced negative feedback regulation of UBSM membrane potential by BK\textsubscript{Ca} channels.

MATERIALS AND METHODS

Cell isolation. All procedures were reviewed and approved by the Office of Animal Care Management at the University of Vermont. Guinea pigs (250–350 g) were euthanized by halothane overdose and then exsanguinated. The urinary bladder was removed and placed in a solution (DS) made up of (in mM) 80 monosodium glutamate, 55 NaCl, 6 KCl, 10 glucose, 10 HEPES, and 2 MgCl\textsubscript{2}, with pH adjusted to 7.3 with NaOH. After adipose and connective tissue were removed, the bladder was cut open and remaining traces of urine were washed away. The urinary bladder was cut into small strips (0.5 mm wide, 1 mm long) and transferred to a water-jacketed vial (2 ml volume, 37°C) containing DS supplemented with 1 mg/ml BSA, 1 mg/ml papain (Worthington), and 1 mg/ml dithioerythritol for 35 min. The papain-containing solution was then replaced with fresh DS containing 1 mg/ml BSA, 1 mg/ml collagenase (Fluka), and 100 \textmu M CaCl\textsubscript{2}. The tissue was left in this solution for 5 min (37°C), and then the solution was replaced with cold BSA-containing DS and kept on ice. After two subsequent washes with cold BSA-containing DS, the tissue pieces were passed through the tip of a fire-polished glass Pasteur pipette to free individual cells. Cells were kept on ice until use, generally within 6 h. All experiments were performed at room temperature (22°C).

Confocal fluorescence microscopy. Isolated myocytes were loaded with the Ca2+-sensitive fluorophore fluo 3-AM (Molecular Probes) by mixing 250 \textmu l of cell suspension with 250 \textmu l of bath solution containing (in mM) 134 NaCl, 6 KCl, 1 MgCl\textsubscript{2}, 2 CaCl\textsubscript{2}, 10 glucose, and 10 HEPES, with pH adjusted to 7.4 with NaOH, and supplemented with 5 \textmu M fluo 3-AM. One hundred microliters of this fluo 3-containing cell suspension was added to a single image. Scan durations were 10–20 s. Pharmacological agents were applied to the test chamber at stated concentrations via a gravity-fed reservoir at a flow rate of ~2.5 ml/min.

Images were analyzed with custom software written by Dr. Adrian Bonev using IDL 5.0.2 (Research Systems). Ca2+ sparks were defined as local increases in fluorescence of 1.2 F/F\textsubscript{0} (where F is the instantaneous fluorescence at a given time point and F\textsubscript{0} is the baseline fluorescence) that persisted for at least two images. F\textsubscript{0} was obtained by averaging 10 images containing no discernable Ca2+ transients. For quantitation of Ca2+ sparks, a square-box region (2.2 \times 2.2 \mu m or 10 \times 10 pixels) was placed over an area of the cell in which Ca2+ sparks were observed, and F/F\textsubscript{0} traces were generated for this region of the cell. Event frequency, amplitude, and kinetics were determined from entire experimental recordings lasting for 10–20 s.

Electrophysiology. A single drop of cell suspension was placed on a glass coverslip in the bottom of a recording chamber (~1 ml volume). Cells were allowed up to 20 min to adhere to the coverslip, and then fresh bath solution (see above for composition) was applied. Whole cell currents were measured using the perforated-patch technique (14). The pipette solution contained (in mM) 110 potassium aspartate, 30 KCl, 10 NaCl, 1 MgCl\textsubscript{2}, 10 HEPES, and 0.05 EGTA, with pH adjusted to 7.2 with NaOH. Amphotericin B (200 \mu g/ml) was also added to the pipette solution. Pharmacological agents were applied to the recording chamber via a gravity-fed reservoir at a flow rate of ~2.5 ml/min. For the cells used in the present study, resting membrane potential was ~36 ± 2 mV, cell capacitance was 35 ± 1 pF, and series resistance was 38 ± 3 M\textOmega (n = 44 cells). Currents were recorded using an Axopatch 200A amplifier (Axon Instruments) filtered at 0.5–1 kHz and digitized at 1–4 kHz. For pharmacological characterization of transient outward currents in UBSM cells, experiments were conducted at a holding potential of ~20 mV. These currents were characterized pharmacologically in a subset of 24 cells for a 5-min period. For control data, the 5-min period immediately before drug application was used for analysis, and to determine the effect of a given drug, a 5-min period was used during which activity was at a steady state. Transient outward currents were analyzed using Mini Analysis (Synaptosoft) with an amplitude threshold of three times the unitary BK\textsubscript{Ca} channel current for guinea pig UBSM cells at the given holding potential (11, 22).

Simultaneous current and Ca2+ measurements. To examine the temporal relationship between Ca2+ sparks and BK\textsubscript{Ca} channel activation, Ca2+ sparks and whole cell currents at holding potentials of ~50 to ~20 mV were measured simultaneously using the methods described above. All simultaneous current and fluorescence recordings were conducted in a standing bath. A trigger source output on the confocal microscope was used to align the fluorescence and electrical records. Entire experimental records lasting for 10–20 s were used for analysis of electrical and fluorescence events (frequency, amplitude, and kinetics). Simultaneous electrical events and Ca2+ sparks were analyzed using custom software written by Dr. Adrian Bonev using IDL 5.0.2 (Research Systems).

Chemicals. Unless otherwise stated, all chemicals used in this study were purchased from Sigma Chemical. Ryonadine was obtained from L. C. Laboratories.

Calculations and statistics. Values are means ± SE. Data were compared using one-way ANOVA or one- or two-tailed t-test, where appropriate. Student-Newman-Keuls method was used for all pairwise multiple comparisons. P < 0.05 was considered statistically significant.

In experiments where Ca2+ sparks were recorded in cells voltage clamped to different membrane potentials, the [Ca2+]- associated with a fluo 3 transient (Ca2+ spark) was estimated...
using the following equation to normalize for changes in background fluorescence, F_0 (global $[Ca^{2+}]$)

$$[Ca^{2+}] = \frac{KR}{(K/[Ca^{2+}]_{rest} + 1) - R}$$

where K is the apparent affinity of fluo 3 for Ca^{2+} (~400 nM; see 3), R is the fractional fluorescence increase (F/F_0), and $[Ca^{2+}]_{rest}$ is the cytosolic $[Ca^{2+}]$ at F_0.

RESULTS

Pharmacological characterization of transient outward currents in UBSM cells. Transient outward currents have been previously observed in UBSM cells (9, 15). These currents were proposed to be conducted by BK_{Ca} channels, since tetraethylammonium (1 mM) or iberiotoxin (30 nM) attenuated these currents by 80% (15). Furthermore, transient outward currents in UBSM are thought to be activated by Ca^{2+} released from the SR, since the RyR agonist caffeine has an initial stimulatory effect on these currents (15). However, a detailed analysis of transient outward currents in UBSM has not been performed, so our first objective was to characterize transient outward currents in this tissue and determine the source of Ca^{2+} initiating these electrical events.

Single UBSM cells were held at a potential of -20 mV using the perforated-patch configuration of whole cell voltage clamp (see MATERIALS AND METHODS). The frequency of transient BK_{Ca} currents was 1.23 ± 0.24 Hz ($n = 24$), and the average amplitude of these currents was 43.2 ± 9.9 pA. Iberiotoxin (100 nM), a selective blocker of BK_{Ca} channels (8, 23), inhibited the
transient currents in the presence of iberiotoxin were conducted by K⁺ channels other than BKCa channels, the potent and selective small-conductance Ca²⁺-dependent K⁺ (SKCa) channel blocker apamin (100 nM) was applied in the presence of 100 nM iberiotoxin. Apamin did not affect these currents (n = 3), suggesting that they are not conducted by SKCa channels (average amplitude of transient currents in the presence of iberiotoxin was 15.6 ± 2.3 pA, average amplitude in the presence of iberiotoxin and apamin = 14.2 ± 1.5 pA, P > 0.05). Furthermore, increasing the concentration of iberiotoxin to 600 nM completely abolished all transient outward current activity in UBSM cells, with an apparent EC₅₀ of 27 nM at −20 mV (n = 3). Thus the transient currents in UBSM can be attributed to activation of BKCa channels.

Transient BKCa currents in other preparations are caused by local Ca²⁺ release (Ca²⁺ sparks) through RyRs in the SR (17, 22). To determine the importance of SR Ca²⁺ release in initiating BKCa currents in UBSM, UBSM cells were treated with thapsigargin (100 nM), which blocks the SR Ca²⁺-ATPase and thereby leads to depletion of SR Ca²⁺ stores (n = 5). Figure 1C shows an original record of BKCa currents measured from a cell before and after thapsigargin. Thapsigargin reduced the BKCa current frequency by 96% (from 1.05 ± 0.26 to 0.04 ± 0.04 Hz, P < 0.05, n = 5; Fig. 1D). This observation suggests that BKCa channels are activated by local Ca²⁺ release. Next, the role of RyRs in causing transient BKCa currents was examined by treating UBSM cells (n = 9) with ryanodine (10 μM) at a concentration that inhibits RyRs (18, 22, 26). Figure 1E shows an original recording of BKCa currents in a single UBSM cell before and after ryanodine (10 μM) treatment. Within 15 min of application, ryanodine caused a marked reduction in transient BKCa current activity. At steady state, ryanodine reduced BKCa current frequency by 94%, from 1.32 ± 0.57 to 0.09 ± 0.03 Hz (P < 0.05, n = 9 cells; Fig. 1F). These observations suggest that BKCa currents are caused by brief Ca²⁺ release events through RyRs in the SR.

Identification of local Ca²⁺ transients (“Ca²⁺ sparks”) in UBSM cells. To determine whether localized transient increases in intracellular [Ca²⁺] ([Ca²⁺]ᵢ) could be observed that may serve as a stimulus for BKCa channel activity in UBSM cells, myocytes were loaded with the Ca²⁺-sensitive indicator fluo 3 and scanned with a laser-scanning confocal microscope (Fig. 2). Localized transient increases in fluorescence were observed in UBSM cells. The spatial and temporal characteristics of these events suggest that they correspond to Ca²⁺ sparks, which have been described in other types of smooth muscle (17, 22), as well as skeletal (19) and cardiac (3) muscle. An average of 2.9 ± 0.3 spark sites per cell were observed (n = 18). Spark frequency was 0.62 ± 0.08 Hz. The fractional fluorescence increase (F/F₀, see MATERIALS AND METHODS) associated with Ca²⁺ sparks in UBSM cells was 2.12 ± 0.03 (n = 344 sparks from 18 cells). Figure 2A is a pseudocolor image of a single UBSM cell loaded with the fluorescent Ca²⁺ indicator fluo 3. In this cell, transient increases in [Ca²⁺]ᵢ, corresponding to Ca²⁺ sparks, were found in three distinct regions (red, orange, and green boxes).

Pharmacological characterization of Ca²⁺ sparks in UBSM cells. In other preparations, Ca²⁺ sparks are attributed to Ca²⁺ release via RyRs in the SR (3, 17, 19, 22, 27). To examine the nature of the Ca²⁺ sparks in UBSM, cells were treated with thapsigargin (100 nM) to inhibit the SR Ca²⁺-ATPase (n = 6). Figure 3A shows an image of a single fluo 3-loaded UBSM cell before (control) and after application of thapsigargin. Under basal conditions, Ca²⁺ sparks were observed at five sites in this cell (regions a–e, Fig. 3A, left). Fluo-
fluctuations were detected at all potentials positive to 50 mV. A summary of kinetic data for Ca$^{2+}$ sparks and BKCa currents was assessed at membrane potentials ranging from −20 to 20 mV. Figure 5A shows Ca$^{2+}$ sparks from two sites and the associated membrane currents were recorded simultaneously. Figure 4A shows the simultaneous electrical and fluorescence recordings from a 20-s scan in a UBSM cell held at −40 mV. Each Ca$^{2+}$ spark is associated with a nearly synchronous transient BKCa current. Larger Ca$^{2+}$ sparks are associated with larger BKCa currents (see below). The peak of the current occurred before the peak of the Ca$^{2+}$ spark by 21.5 ± 4.4 ms (n = 27). The onset time for BKCa currents and sparks can be determined using the rise times (−16 ms for BKCa currents, −35 ms for Ca$^{2+}$ sparks; Table 1), and it is evident that these events start within the imaging resolution (8.33 ms/image). The close temporal relationship (Fig. 4B) between Ca$^{2+}$ sparks and BKCa currents suggests that SR Ca$^{2+}$ release from RyRs (detected as a change in fluorescence) activates BKCa channels.

Membrane potential depolarization increases frequency and amplitude of Ca$^{2+}$ sparks and transient BKCa currents. The relationship between Ca$^{2+}$ sparks and BKCa currents was assessed at membrane potentials ranging from −50 to −20 mV. Figure 5A shows Ca$^{2+}$ sparks from two sites and the associated membrane currents were recorded simultaneously. Figure 5B shows Ca$^{2+}$ sparks from the same cell shown in Fig. 5A and membrane currents at a holding potential of −20 mV. At −20 mV, all Ca$^{2+}$ sparks (n = 127) were associated with BKCa currents, but many currents (61 of 188) were observed without detectable fluorescence transients. This result is not unexpected, since only about one-third of the cell volume is scanned with the confocal microscope, whereas current is recorded across the entire cell membrane.

Thus, although we can detect electrical events associated with nearly every Ca$^{2+}$ spark (94%), we only detect Ca$^{2+}$ sparks that occur in the volume of the cell that is scanned.

Figure 6A illustrates the relationship between holding potential and Ca$^{2+}$ spark and associated BKCa current frequency. Fewer sparks than transient currents were detected at all potentials positive to −50 mV. A summary of kinetic data for Ca$^{2+}$ sparks and BKCa currents recorded at various membrane potentials is given in Table 1.

Global [Ca$^{2+}$], increased with depolarization. Baseline whole cell fluorescence at −50 mV was taken as Fo, and when expressed relative to −50 mV, whole cell...
fluorescence \((F/F_0)\) increased with depolarization 1.04 ± 0.17-fold at -40 mV \((n = 8)\), 1.12 ± 0.19-fold at -30 mV \((n = 8)\), and 1.76 ± 0.49-fold at -20 mV \((n = 5)\); these values are consistent with previous measurements of steady-state \([Ca^{2+}]_i\) in UBSM (9). \(Ca^{2+}\) spark amplitude also increased with depolarization. The fractional increase in fluorescence, \(F/F_0\), of the \(Ca^{2+}\) sparks was used to calculate \([Ca^{2+}]_i\) during a spark (see Eq. 1). Values for \([Ca^{2+}]_{rest}\) were taken from measurements of \([Ca^{2+}]_i\) in voltage-clamped UBSM cells and were 115 nM at -50 mV, 150 nM at -40 mV, 180 nM at -30 mV, and 250 nM at -20 mV (9). Figure 6B shows the increase in \(Ca^{2+}\) spark amplitude at depolarized potentials. The increase in spark amplitude and increased global \([Ca^{2+}]_i\) suggest that SR \(Ca^{2+}\) content increases at depolarized potentials.

Membrane potential depolarization increases the coupling strength of RyRs to \(BK_{Ca}\) channels. A striking observation is that \(BK_{Ca}\) current amplitude increases dramatically at depolarized potentials (cf. Fig. 5, A and B). \(BK_{Ca}\) current amplitude increased from 8.6 ± 0.8 pA at -50 mV to 144.1 ± 14.3 pA at -20 mV (-16-fold). To account for the effects of the \(K^+\) driving force on measured \(BK_{Ca}\) currents, the peak transient \(BK_{Ca}\) currents \((I_{BK})\) were divided by the unitary \(BK_{Ca}\) current \((i)\) (11) at each potential (Fig. 6C). \(BK_{Ca}\) channel activity, measured as \(I_{BK}/i\), increased sixfold over the range of -50 to -20 mV (Fig. 6C). The elevation in

Table 1. Summary of \(BK_{Ca}\) current and \(Ca^{2+}\) spark kinetics from simultaneous measurements

<table>
<thead>
<tr>
<th>Membrane Potential, mV</th>
<th>(BK_{Ca}) Currents</th>
<th>(Ca^{2+}) Sparks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rise Time, ms</td>
<td>Duration, ms</td>
</tr>
<tr>
<td>-20</td>
<td>18.9 ± 1.8</td>
<td>30.8 ± 2.3*</td>
</tr>
<tr>
<td>-30</td>
<td>15.7 ± 1.2</td>
<td>28.5 ± 1.3*</td>
</tr>
<tr>
<td>-40</td>
<td>15.9 ± 1.3</td>
<td>27.1 ± 1.9*</td>
</tr>
<tr>
<td>-50</td>
<td>15.7 ± 2.1</td>
<td>16.1 ± 2.1</td>
</tr>
</tbody>
</table>

Values are means ± SE from \(n\) individual events measured in 5–8 cells at each membrane potential. \(BK_{Ca}\) current, large-conductance \(Ca^{2+}\)-activated \(K^+\) current; rise time, time from baseline to peak; duration, full width at half-maximum amplitude; \(t_{1/2}\), half-time for decay determined by a single exponential fit. \(*P < 0.05\) vs. -50 mV.
BK_{Ca} current at depolarized potentials could reflect an increase in the Ca²⁺ released during a Ca²⁺ spark (Fig. 6B) or an increase in the sensitivity of BK_{Ca} channels to Ca²⁺ sparks, such that a Ca²⁺ spark of a given amplitude causes a larger transient BK_{Ca} channel current at more depolarized voltages.

To explore the issue of the elevation of transient BK_{Ca} currents with membrane depolarization, the relationship between peak BK_{Ca} channel activity (I_{BK}/i) and peak [Ca²⁺] during a spark was determined at each membrane potential. Peak transient BK_{Ca} channel activity, corrected for driving force (I_{BK}/i), increased with peak [Ca²⁺] during a spark at all voltages (Fig. 7). Membrane potential depolarization increased the steepness of the relationship between peak [Ca²⁺] during a spark and I_{BK}/i, indicating that a given-size Ca²⁺ spark is more effective at activating BK_{Ca} channels at more positive voltages. Thus the coupling strength of a Ca²⁺ spark to BK_{Ca} channels increased with depolarization.

Fig. 5. Voltage dependence of Ca²⁺ sparks and BK_{Ca} currents in UBSM cells. A: original recordings of whole cell currents (top trace) and Ca²⁺ sparks (middle and bottom traces) in a UBSM cell held at −50 mV. There were 2 active spark sites in this cell. B: original recording of BK_{Ca} currents (top trace) and Ca²⁺ sparks (middle and bottom traces) in a UBSM cell held at −20 mV. The same 2 spark sites were active at −20 mV. Note the large amplitude and high frequency of the currents at this potential compared with −50 mV. At −20 mV, several of the smaller currents occur with no detectable Ca²⁺ sparks, but every spark is associated with an electrical event.

Fig. 6. Ca²⁺ spark and BK_{Ca} current amplitude and frequency increase with depolarization. A: voltage dependence of Ca²⁺ spark and BK_{Ca} current frequency. E_{mem} is membrane equilibrium potential. B: voltage dependence of Ca²⁺ spark amplitude (peak spark Ca²⁺ concentration ([Ca²⁺]) minus resting intracellular [Ca²⁺]). C: BK_{Ca} channel activity (I_{BK}/i, where I_{BK} is BK_{Ca} current and i is unitary BK_{Ca} current) increases with membrane potential depolarization from −50 to −20 mV (n = 5–8 cells at each membrane potential).

Fig. 7. Membrane potential depolarization increases the coupling strength of RyRs to BK_{Ca} channels. BK_{Ca} channel activity (I_{BK}/i) is plotted as a function of Ca²⁺ spark amplitude (peak spark [Ca²⁺]). Each color group is a scatter plot of Ca²⁺ spark amplitude vs. I_{BK}/i at a given membrane potential, fit by least-squares regression (n = 5–8 cells at each potential). Peak Ca²⁺ spark amplitudes were obtained using Eq. 1. Correlation coefficients were 0.75, 0.80, 0.81, and 0.83 at −20, −30, −40, and −50 mV, respectively. Dashed lines, 95% confidence intervals for each fit.
It is possible that the increase in Ca\(^{2+}\) spark-induced BK\(_{Ca}\) channel activity with depolarization reflects a greater spatial spread of Ca\(^{2+}\) sparks, such that a spark would recruit more BK\(_{Ca}\) channels on a greater surface of the cell at more positive voltages. Despite the slight increase in Ca\(^{2+}\) spark amplitude with depolarization (Fig. 6B), Ca\(^{2+}\) spark spatial spread (area of spark at half-maximum amplitude) did not change with membrane potential depolarization (Fig. 8). This observation is in contrast to reports in striated muscle, where larger-amplitude sparks also have a larger spatial profile (10), and suggests that the increased BK\(_{Ca}\) channel activity ($I_{BK/i}$) at depolarized potentials cannot be explained by an increased spread of the Ca\(^{2+}\) sparks but, instead, is due to a higher activity of BK\(_{Ca}\) channels activated by a given-size Ca\(^{2+}\) spark.

BK\(_{Ca}\) channel activity in the absence of Ca\(^{2+}\) sparks. To estimate the increase in BK\(_{Ca}\) channel activity caused by a Ca\(^{2+}\) spark, it is necessary to determine BK\(_{Ca}\) channel activity in the absence of sparks. To do this, whole cell membrane currents were recorded (perforated patch) in UBSM cells that were pretreated with thapsigargin (100 nM) for 10 min to eliminate Ca\(^{2+}\) sparks (see Ref. 25 for a similar procedure in vascular smooth muscle). UBSM cells were held at 0 mV, and single BK\(_{Ca}\) channel activity was recorded. BK\(_{Ca}\) channel activity was 0.073 ± 0.039 (n = 4; not shown).

DISCUSSION

BK\(_{Ca}\) channels as targets for Ca\(^{2+}\) sparks in UBSM. BK\(_{Ca}\) channels are key elements in the regulation of UBSM function. BK\(_{Ca}\) channels are involved in the repolarization of the action potential (11, 20). The specific BK\(_{Ca}\) channel inhibitor iberiotoxin causes a membrane potential depolarization and increases the action potential amplitude, duration, and frequency (11), and this causes a dramatic increase in the amplitude and duration of phasic UBSM contractions (12).

Step depolarization of UBSM cells leads to transient SR Ca\(^{2+}\) release, which is associated with activation of Ca\(^{2+}\)-dependent K\(^+\) channels (16). These Ca\(^{2+}\) transients (referred to as “hot spots”) coalesced into a global Ca\(^{2+}\) transient over the course of ~100 ms and were rarely observed in cells at rest (16). This situation is different from the present study, where Ca\(^{2+}\) sparks occurred in unstimulated cells, and had very little effect on global [Ca\(^{2+}\)]\(_i\). However, the observation that SR Ca\(^{2+}\) release can activate BK\(_{Ca}\) channels provides a possible mechanism to account for the involvement of BK\(_{Ca}\) channels in the regulation of the membrane potential.

Ca\(^{2+}\) sparks and SK\(_{Ca}\) channels. Apamin-sensitive SK\(_{Ca}\) channels play an important role in regulating UBSM contractility (12). Because these channels are activated by Ca\(^{2+}\) in the submicromolar range (13), Ca\(^{2+}\) sparks should activate these channels. We found that transient outward currents in UBSM were not sensitive to the SK\(_{Ca}\) channel blocker apamin. This finding suggests that apamin-sensitive SK\(_{Ca}\) channels are not present in sufficient density near a spark site to generate measurable currents.

Ca\(^{2+}\) sparks dramatically elevate BK\(_{Ca}\) channel activity. The results of the present study have significant implications for communication between RyRs and BK\(_{Ca}\) channels. On the basis of our measurements, the increase in BK\(_{Ca}\) channel activity during a Ca\(^{2+}\) spark can be estimated (24). Dividing the transient BK\(_{Ca}\) current by the unitary current gives an estimate for the minimum number of BK\(_{Ca}\) channels activated by a Ca\(^{2+}\) spark. At −20 mV, a Ca\(^{2+}\) spark activates ±35 BK\(_{Ca}\) channels in ±0.3% of the cell membrane (Figs. 6C and 8). The whole cell activity (open channel probability) of BK\(_{Ca}\) channels in the absence of sparks is ~10\(^{-7}\) at −20 mV on the basis of our single BK\(_{Ca}\) channel measurements in whole cells. Therefore, a Ca\(^{2+}\) spark increases the mean activity of BK\(_{Ca}\) channels above the spark site 10\(^6\)-fold at −20 mV. For such a substantial increase in BK\(_{Ca}\) channel activity to occur, [Ca\(^{2+}\)]\(_i\) in the vicinity of BK\(_{Ca}\) channels would have to increase ~30-fold, with the assumption that channel activity increases with the fourth power of [Ca\(^{2+}\)] (2). This means that a Ca\(^{2+}\) spark increases [Ca\(^{2+}\)]\(_i\) in its local domain from ~250 nM at rest to ~7.5 μM at −20 mV (see Ref. 9 for resting [Ca\(^{2+}\)]\(_i\) in UBSM). Therefore, the [Ca\(^{2+}\)]\(_i\) sensed by the BK\(_{Ca}\) channel is far greater than that reported by the fluorescent indicator fluo 3 (24). To communicate high [Ca\(^{2+}\)]\(_i\) (~10 μM) to the BK\(_{Ca}\) channel, the RyRs in a spark site must be close to the BK\(_{Ca}\) channels in the surface membrane (7, 17).

Voltage dependence of coupling strength of RyRs to BK\(_{Ca}\) channels. In the present study, we characterized the relationship between Ca\(^{2+}\) sparks and their associated BK\(_{Ca}\) currents over a range of membrane potentials (−50 to −20 mV). Ca\(^{2+}\) spark frequency and amplitude increased with depolarization (Fig. 6, A and B). Membrane depolarization from −50 to −20 mV elevated global [Ca\(^{2+}\)] from 115 to 260 nM on the basis of an increase in whole cell fractional fluorescence (resting [Ca\(^{2+}\)]\(_i\), at ~50 mV from Ref. 9). This would lead to an elevation of SR Ca\(^{2+}\) content. The elevation of cytoplasmic and SR Ca\(^{2+}\) should elevate Ca\(^{2+}\) spark frequency (28). An elevation of SR Ca\(^{2+}\) would also increase spark amplitude (28).

Fig. 8. Spatial spread of Ca\(^{2+}\) sparks does not change with membrane potential. Ca\(^{2+}\) spark spatial spread was measured at half-maximum amplitude at each membrane potential. Scatter plot shows individual measurements obtained in 5–8 cells at each membrane potential. Horizontal lines, group means.
Membrane potential dramatically impacted the amplitude of the BK$_{\text{Ca}}$ channel currents activated by a spark (Fig. 6C). Because the Ca$^{2+}$ sensitivity of the BK$_{\text{Ca}}$ channel increases with depolarization (5, 6, 21), we propose that changes in the apparent Ca$^{2+}$ sensitivity of the BK$_{\text{Ca}}$ channel could underlie the depolarization-induced increase in transient BK$_{\text{Ca}}$ current amplitude activated by a given-size Ca$^{2+}$ spark. At each membrane potential, BK$_{\text{Ca}}$ current amplitude correlated with spark [Ca$^{2+}$] (Fig. 7). Depolarization caused a steepening of the relationship between BK$_{\text{Ca}}$ currents and peak [Ca$^{2+}$] during a spark, such that a given Ca$^{2+}$ spark caused a larger increase in BK$_{\text{Ca}}$ channel activity. In fact, the voltage dependence of BK$_{\text{Ca}}$ channel activity (I_{BKCa}) for a given-size Ca$^{2+}$ spark mirrors the voltage dependence of the Ca$^{2+}$ sensitivity of the BK$_{\text{Ca}}$ channel (6-fold increase in BK$_{\text{Ca}}$ channel activity at 10 μM Ca$^{2+}$ from -50 to -20 mV). Cui and co-workers (6) found that the apparent dissociation constant of the BK$_{\text{Ca}}$ channel decreased approximately sixfold over the voltage range -50 to -20 mV, and their results suggest that the coupling strength of Ca$^{2+}$ sparks to BK$_{\text{Ca}}$ channels should increase approximately e-fold per 20 mV of depolarization, until BK$_{\text{Ca}}$ channels saturate with [Ca$^{2+}$].

In addition to the enhanced Ca$^{2+}$ sensitivity, two other factors contribute to the elevation of transient BK$_{\text{Ca}}$ current with membrane potential depolarization. The amplitude of Ca$^{2+}$ sparks increased by 30% with membrane depolarization from -50 to -20 mV (Fig. 6B). The K$^+$ driving force also increased with depolarization. These three factors lead to a -16-fold increase in BK$_{\text{Ca}}$ current amplitude over the range of -50 to -20 mV. In contrast, the frequency of Ca$^{2+}$ sparks and transient BK$_{\text{Ca}}$ currents increased nearly fivefold over this same range of membrane potentials (Fig. 6A). Therefore, amplitude modulation of BK$_{\text{Ca}}$ currents at depolarized potentials reflects three main factors: 1) an increase in the driving force for K$^+$, 2) an increase in the amount of Ca$^{2+}$ released during a spark, and 3) augmented coupling strength of RyRs to BK$_{\text{Ca}}$ channels. The coupling strength increased about sixfold for 30 mV (Fig. 6C) and, as such, was the most significant contributor to the amplitude modulation of the transient BK$_{\text{Ca}}$ currents by voltage.

In conclusion, the present study supports the idea of local communication between RyRs in the SR and BK$_{\text{Ca}}$ channels in the sarcolemma of UBSM cells. This communication involves Ca$^{2+}$ release events (Ca$^{2+}$ sparks), which serve as the stimulus to activate BK$_{\text{Ca}}$ channels, thus comprising a negative-feedback system to regulate Ca$^{2+}$ entry via voltage-dependent Ca$^{2+}$ channels (22). Surprisingly, the coupling strength between Ca$^{2+}$ sparks and BK$_{\text{Ca}}$ channels increases with membrane potential depolarization, resulting in much larger BK$_{\text{Ca}}$ currents for a given-size Ca$^{2+}$ spark at depolarized potentials. On the basis of previous studies (24), we expected that BK$_{\text{Ca}}$ channels would be saturated with Ca$^{2+}$ during a spark at all membrane potentials, and the coupling strength would not increase with membrane potential depolarization but would simply reflect the electrochemical gradient for K$^+$. Our data suggest that BK$_{\text{Ca}}$ channels are not saturated by Ca$^{2+}$ during a spark and that the BK$_{\text{Ca}}$ channel Ca$^{2+}$ sensitivity is under dynamic regulation, depending on the membrane potential. Thus the gain on this feedback system is effectively increased at depolarized potentials, owing to the voltage-dependent nature of the BK$_{\text{Ca}}$ channel Ca$^{2+}$ sensitivity (5, 6). It is likely that this local signaling scheme plays an important role in controlling UBSM contractility by affecting membrane excitability, especially at depolarized membrane potentials when the coupling of RyRs to BK$_{\text{Ca}}$ channels is enhanced. These results suggest that other factors (e.g., the β-subunit or protein kinase A or G) that regulate the Ca$^{2+}$ sensitivity of BK$_{\text{Ca}}$ channels should also modulate the coupling of Ca$^{2+}$ sparks to BK$_{\text{Ca}}$ channel activation.

The authors thank Drs. Adrian Bonev, David Hill-Eubanks, and Guillermo Pérez for comments and discussions regarding the manuscript.

This work was supported by National Institutes of Health Grants DK-53832 and HL-44455 (to M. T. Nelson). G. M. Herrera is a National Science Foundation Graduate Research Fellow.

REFERENCES

