Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line

TORU YAMAGUCHI, NAIBEDYA CHATTOPADHYAY, OLGA KIFOR, CHIANPING YE, PETER M. VASSILEV, JENNIFER L. SANDERS, AND EDWARD M. BROWN

Endocrine-Hypertension Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115

Received 12 May 2000; accepted in final form 15 September 2000

Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line. Am J Physiol Cell Physiol 280: C382–C393, 2001.—We have previously shown the expression of the extracellular calcium-sensing receptor (CaR) in osteoblast-like cell lines, and others have documented its expression in sections of murine, bovine, and rat bone. The existence of the CaR in osteoblasts remains controversial, however, since some studies have failed to document its expression in the same osteoblast-like cell lines. The goals of the present study were twofold. 1) We sought to determine whether the CaR is expressed in the human osteoblast-like cell line, MG-63, which has recently been reported by others not to express this receptor. 2) We investigated whether the CaR, if present in MG-63 cells, is functionally active, since most previous studies have not proven the role of the CaR in mediating known actions of Ca2+ on osteoblast-like cells. We used immunocytochemistry and Western blotting with the specific, affinity-purified anti-CaR antisera 4637 as well as Northern blot analysis and RT-PCR using a riboprobe and PCR primers specific for the human CaR, respectively, to show readily detectable CaR protein and mRNA expression in MG-63 cells. Finally, we employed the patch-clamp technique to show that an elevation in Ca2+ as well as the specific, allosteric CaR activator NPS R-467 (0.5 μM), but not its less active stereoisomer NPS S-467 (0.5 μM), activate an outward K+ channel in MG-63 cells, strongly suggesting that the CaR in MG-63 cells is not only expressed but is functionally active.

G protein-coupled receptor; potassium channel; Northern analysis; reverse transcriptase-polymerase chain reaction; Western analysis; immunocytochemistry

MAINTAINING THE EXTRACELLULAR CALCIUM CONCENTRATION (Ca2+) within a narrow physiological range is crucial for numerous cellular processes, including the maintenance of membrane potential as well as cellular proliferation, differentiation, and secretion (4). Precise regulation of Ca2+ is afforded by a G protein-coupled, Ca2+-sensing receptor (CaR) that was originally cloned from bovine parathyroid gland and senses Ca2+ as an extracellular first messenger (6). The CaR was later isolated from rat C cells (18, 21) and kidney (38) and also shown to be present in the intestine (11), thereby implicating it in maintaining Ca2+ homeostasis not only through its actions on the secretion of Ca2+-regulating hormones (i.e., parathyroid hormone and calcitonin) but also through its effects on tissues translocating Ca2+ into or out of the extracellular fluid (e.g., kidney and intestine).

Bone, like parathyroid, kidney, and intestine, participates in systemic Ca2+ homeostasis (5). Thus the CaR could also potentially play some role(s) within the skeleton by sensing local changes in Ca2+ owing to bone remodeling. Bone formation during skeletal turnover is preceded by the migration of macrophage-like mononuclear cells to sites of recent bone resorption during the “reversal” phase that precedes the laying down of new bone (3). Preosteoblasts subsequently migrate to the same sites, differentiate into mature osteoblasts, and eventually deposit and mineralize osteoid protein (36, 37). Bone resorption can produce local increases in Ca2+ beneath resorbing osteoclasts that reach levels as high as 8–40 mM (39). The latter could, therefore, provide both macrophage-like mononuclear cells and preosteoblasts in the local microenvironment with a signal that modulates their subsequent physiological responses, such as migration and proliferation. In fact, high Ca2+ induces chemotaxis of human peripheral blood monocytes (41) and both chemotaxis and proliferation of mouse osteoblastic MC3T3-E1 cells (44). These two cell types have the capacity, respectively, to differentiate into mature osteoclasts (19) and osteoblasts (40) under appropriate conditions in culture.

Whether the CaR mediates the known actions of Ca2+ on osteoblasts, however, remains controversial. We previously showed expression of this receptor in diverse cell types within human bone marrow, including alkaline phosphatase (ALP)-positive, putative osteoblast precursors (23). Using multiple detection methods (i.e., immunocytochemistry, Western and Northern analyses, and RT-PCR), we subsequently
identified CaR protein and mRNA in the osteoblast-like cell lines UMR-106 and SAOS-2 (45). Recently, we also found that the murine ST-2 stromal cell line (43) and the murine MC3T3-E1 osteoblastic cell line (44) express the CaR. Others have likewise shown in recent studies that the CaR is expressed in the latter cell line (25) as well as in most osteoblasts in sections of murine, rat, and bovine bone (10). Furthermore, CaR agonists stimulate chemotaxis and proliferation of both ST-2 and MC3T3-E1 cells (43, 45), suggesting that the receptor could potentially represent the molecular mediator of some or even all of the previously documented actions of high Ca2+ on osteoblasts and/or their precursors.

However, some investigators have failed to detect CaR expression in osteoblast-like cells (33, 35). Indeed, Quarles and coworkers (35) have suggested that the effects of elevated levels of Ca2+ on MC3T3-E1 cells are mediated by a Ca2+-sensing mechanism distinct from the CaR, based, in part, on their failure to detect the CaR by RT-PCR or Western blot analysis in U-2OS, SAOS-2, and MG-63 osteoblast-like cells in a recent study (33). Thus whether or not the CaR and/or other Ca2+ sensors are expressed in osteoblasts still remains controversial.

The goals of the present study were twofold: 1) to determine whether the CaR is expressed in MG-63 cells, an osteoblast-like cell line that we have not studied previously; and 2) to evaluate whether the CaR, if expressed in this cell line, is functionally active. Our results demonstrate readily detectable expression of a functionally active CaR on the cell surface of MG-63 cells, thereby further supporting our previous evidence that the CaR mediates at least some of the known actions of Ca2+ on osteoblast-like cells.

MATERIALS AND METHODS

Materials. All routine culture media were obtained from Gibco BRL (Grand Island, NY). NPS R-467 and NPS S-467 were generous gifts of Dr. Edward F. Nemeth, NPS Pharmaceuticals, Salt Lake City, UT.

Preparation of bovine parathyroid cells. Parathyroid glands from calves were collected on ice, minced into small fragments, and digested at 37°C for 75 min with collagenase and DNase as described previously (7, 27). Dispersed cells were subsequently utilized for preparation of cellular proteins to be employed for Western blotting as described below.

Culture and maintenance of CaR transfected and untransfected HEK-293 cells. We obtained a clonal line of human embryonic kidney (HEK-293) cells stably transfected with the cDNA encoding the human parathyroid CaR (hPCaR4.0 (20)) (referred to here as HEKCaR cells) as well as untransfected HEK-293 cells (designated as HEK-293 cells) as generous gifts from Dr. Kimberly Rogers, NPS Pharmaceuticals. We have previously shown that untransfected HEK-293 cells do not express an endogenous CaR and are unresponsive to CaR agonists, whereas HEK-293 cells transiently or stably transfected with the CaR show robust, high Ca2+-evoked increases in the cytosolic Ca2+ concentration ([Ca2+]), accumulation of inositol phosphates, and regulation of other CaR-dependent signaling pathways (1, 26). Cells were grown in Dulbecco's modified Eagle's medium with 10% fetal bovine serum (FBS) without pyruvate and with 200 μg/ml hygromycin B.

Cell culture. MG-63 cells, established as an osteoblastic cell line from a human osteosarcoma, were obtained from Dr. Nancy Weigel, Baylor College of Medicine, Houston, TX, who obtained the cells originally from American Type Culture Collection (Manassas, VA). MG-63 cells were grown in α-Eagle's minimum essential medium (Ca2++ 1.8 mM; Mg2++ and 0.81 mM; H2PO\textsubscript{4}-- 1.0 mM) supplemented with 10% FBS (Hyclone, Logan, UT) and 1% penicillin/streptomycin in 5% CO\textsubscript{2} at 37°C. The medium was changed twice weekly, and the cells were subcultured into 25-cm² culture flasks by detach-
immunostained for the CaR and for either of the two plasma
CA). For identification of plasma membrane localization of
tagging with the fluorophore Alexa 568 (Molecular Probes,
Eugene, OR) for 3 h in the dark at room temperature. The
next day, after being washed as above, the cells were
incubated with a mixture of rabbit polyclonal anti-CaR anti-
body binding sites, the cells were then incubated with PBS
that contained 1% BSA and 1% normal goat serum for 30
min at room temperature. After blocking, the cells were
incubated overnight at 4°C with 10 μg/ml of the antiserum in
the blocking solution. On the following day, the cells were
washed three times with 50% blocking solution in PBS and
incubated with a secondary goat anti-rabbit antiserum
tagged with the fluorophore Alexa 568 (Molecular Probes,
Eugene, OR) for 3 h in the dark at room temperature. The
cells were subsequently washed three times with PBS and
washed three times with 50% blocking solution in PBS that
contained 1% BSA and 1% normal goat serum for blocking
the nonspecific background staining, the cells were then
incubated with a 1:2,000 dilution of horseradish peroxidase-coupled
antibody sites, the cells were then incubated with
immunofluorescence staining. The cells were
photographically captured and mounted using anti-
horseradish peroxidase activity (ALP) (located on the cell surface of
osteoblasts). After blocking the nonspecific background staining, the cells were
incubated with a mixture of rabbit polyclonal anti-CaR antiserum
4637 and chicken anti-Na-K-ATPase (Chemicon
International) antibodies were incubated with blocking solution overnight at 4°C in a humidified chamber.
The next day, after being washed as above, the cells were
incubated with a mixture of secondary antibodies [i.e., Alexa
Fluor 568-conjugated goat anti-rabbit IgG (Molecular Probes/FTTC-conjugated anti-chicken IgG (Sigma) or Alexa
Fluor 568 goat anti-rabbit IgG/Alexa 488-conjugated goat
anti-mouse IgG (Molecular Probes)] for 3 h in the dark at
room temperature. Images of the resultant fluorescence were
then collected on a Bio-Rad MRC 1024.2P multiphoton con-
cfocal microscope in the Brigham and Women’s Hospital Con-
focal Microscope Core Facility. The system is equipped with
krypton and argon lasers that can produce excitation wave-
lengths of 488, 568, and 647 nm. Alexa 568 was excited at 568
nm, which produces a red signal, while fluorescein or Alexa
488 was excited at 488 nm, which yields a green signal. The
autofluorescence of the samples was minimal and was sub-
tracted from the values obtained during measurements. Be-
cause peptide blocking of anti-CaR antiserum 4637 was per-
formed for both immunoperoxidase staining and Western
blotting to establish its specificity, this control was not re-
peled in the studies using immunofluorescence. Photomicro-
graphy was carried out at ×1,000.

Western analysis of the CaR in MG-63 cells. Dispersed
bovine parathyroid cells or confluent monolayers of HEKaCaR
or MG-63 cells that had been cultured in six-well plastic
cluster plates were rinsed with ice-cold PBS and scraped on
ice into lysis buffer that contained 10 mM Tris-HCl, pH 7.4,
1 mM EGTA, 1 mM EDTA, 0.25 M sucrose, 1% Triton X-100,
1 mM dithiothreitol, and a cocktail of protease inhibitors (10
μg/ml each of aprotinin, leupeptin, and calpain inhibitor
as well as 100 μg/ml Fafelbloc). The cells were then passed
though a 22-gauge needle 10 times. Nuclei and cell debris
were removed by low-speed centrifugation (1,000 g for 10
min), and the resultant total cellular lysate in the superna-
tant was used either directly for SDS-PAGE or stored at
−80°C.

Immunoblot analysis was performed essentially as de-
scribed before (27, 28). Aliquots of supernatant fractions
containing the total cellular lysate (20 μg of protein from
HEKaCaR and bovine parathyroid cells and 40 μg from MG-63
cells) were mixed with an equal volume of 2× SDS-Laemml
gel loading buffer containing 100 mM dithiothreitol, incu-
bated at 37°C for 15 min, and resolved electrophoretically on
linear 3–10% gradient gels. The separated proteins were
then transferred to nitrocellulose filters (Schleicher and
Schuell, Keene, NH) and incubated with blocking solution
(PBS with 0.25% Triton X-100 and 5% dry milk) for 1 h at
room temperature. The blots were subsequently incubated
overnight at 4°C with affinity-purified polyclonal antiserum
4637 at 1 μg/ml with or without preincubation with twice the
concentration (e.g., 2 μg/ml) of the peptide against which the
antiserum was raised (as a control for nonspecific binding) in
blocking solution with 1% dry milk. The blots were subse-
quently washed five times with PBS that contained 0.25%
Triton X-100 and 0.1% dry milk (washing solution) at room
temperature for 10 min each. The blots were further incub-
cated with a 1:2,000 dilution of horseradish peroxidase-coupled
group anti-rabbit IgG (Sigma) in blocking solution with 1%
dry milk for 1 h at room temperature. The blots were
finally washed five times with the washing solution, and
protein bands were detected using an enhanced chemilumi-
nescence system (Renaissance kit, DuPont-NEB).

Detection of CaR transcripts in MG-63 cells by Northern
blot analysis. To determine the size of the CaR transcript(s)
in MG-63 cells, Northern blot analysis was employed on
following: 1.2 μg of a 3637 at 1

RT-PCR of CaR transcripts in MG-63 cells. Total RNA was
prepared from monolayers of MG-63 cells in 25-cm² culture
flasks with the Trizol reagent (GIBCO BRL). One micro-
gram of total RNA was used for the synthesis of single-
stranded cDNA (cDNA synthesis kit, GIBCO BRL). The
resultant first-stranded cDNA was used for the PCR procedure
(16, 45). PCR was performed in a buffer that contained the
following final concentrations of the listed reagents: 20 mM
Tris-HCl (pH 8.4), 50 mM KCl, 1.8 mM MgCl₂, 0.2 mM
dNTP, 0.4 μM of forward primer, 0.4 μM of reverse primer,
and 1 μl of ELongase enzyme mix (taq/Pyrococcus spec-
estra and amino acid sequences for CaR in MG-63 cells. Three
RT-PCRs were performed to amplify the full-length cDNA
transcripts in HEKaCaR cells and MG-63 cells: a CaR
transcript (1, 20) was subcloned into the pBluescript SK⁻ vector.
The plasmid was then linearized with Kpn I, and a 32P-labeled riboprobe was synthe-
sized with the MAXScript T3 kit (Pharmacia Biotech, Pisca-
taway, NJ) using T3 polymerase and [32P]UTP. Nylon
membranes were prehybridized for 2 h at 55°C in a solution
consisting of 50% formamide, 4× Denhardt’s solution (50
μg/ml) of the antiserum in 1/100 dilution of blocking solution
overnight at 4°C with affinity-purified polyclonal antiserum
overnight at 68°C. Washing was carried out at high stringency
[0.1× SSC (20× SSC = 2.98 M NaCl and 0.2 M EDTA in 0.2
M phosphate buffer, pH 7.0), 0.5% SDS, 10% dextran sulfate,
250 μg/ml yeast tRNA, and 200 μg/ml calf thymus DNA.
Labeled cRNA probe (2× 10⁶ cpm/ml) was then added, and
the membranes were hybridized overnight at 68°C. The
membranes were washed at high stringency [0.1× SSC (20× SSC = 2.98 M NaCl and 0.3 M Na₃-citrate-2H₂O) and 0.1% SDS at 68°C]
(30 min) (6). The membranes were sealed in plastic and
exposed to a PhosphorImager screen. The screens were ana-
lyzed on a PhosphorImager (Molecular Dynamics, Sunny-
vale, CA) using the ImageQuant program.
followed by 35 cycles of amplification (30-s denaturation at 94°C, 30-s annealing at 55°C, and 1-min extension at 72°C). The reaction was completed with an additional 10-min incubation at 72°C to allow completion of extension. PCR products were fractionated on 1.2% agarose gels. The presence of a 425-bp amplified product was consistent with a positive PCR reaction arising from CaR-related sequence within cDNA. The PCR product in the reaction mixture was then purified using the QIAquick PCR purification kit (Qiagen, Santa Clarita, CA) and subjected to direct, bidirectional sequencing employing the same primer pairs used for PCR by means of an automated sequencer (AB377; Applied Biosystems, Foster City, CA) in the DNA Sequence Faculty of the University of Maine (Orono, ME) using dideoxy terminator Taq technology.

Electrophysiological measurements. Channel activities were measured in cell-attached and inside-out patches in continuously superfused cells using the patch-clamp technique, as described previously (49). The extracellular bath solution contained, unless otherwise specified (in mM): 140 NaCl, 4.0 KCl, 0.75 CaCl2, 1.0 MgCl2, 10 glucose, and 10 HEPES, pH 7.4. Solutions containing CaR agonists, activators, or other agents were applied to the MG-63 cells by superfusion. The pipette solution contained, unless otherwise specified (in mM): 87.0 NaCl, 55.0 KCl, 1.0 CaCl2, 1.0 MgCl2, 10 glucose, and 10 HEPES, pH 7.4. When filled with this external solution, pipette tip resistances were 5–10 MΩ. Appropriate concentrations of EGTA were added to achieve final concentrations of 0.1 or 0.5 μM free Ca2+ in studies with inside-out patches. Currents were measured using an integrating patch-clamp amplifier, and single-channel currents were filtered at 3 kHz. Voltage stimuli were applied, and single-channel currents were digitized (200 μs per point) and analyzed using programs that were based on pCLAMP (Axon Instruments, Foster City, CA). The baseline current was monitored frequently to ensure proper analysis of single-channel currents.

The resting potential (Vr) of these cells had a mean value that averaged −70 mV in an extracellular solution that contained 5.4 mM K+. Vr was measured in separate experiments or at the end of some single-channel recordings by breaking the membrane patch with negative pressure. The observed mean value of −70 mV was assumed for calculation of membrane potential (Vm) for experiments in which Vr was not measured. In experiments using cell-attached patches, Vm was expressed as Vr plus the voltage applied to the patch pipette (Vp). Upward deflections in the current records represent positive outward currents.

The probability of channel opening (Po) was calculated from 20-s segments of current records using the equation

\[P_o = \frac{I}{N \cdot i} \]

where I is the time-averaged current passing through the channels for a given period of time, N is the number of channels functioning independently within the membrane patch, and i is the single-channel current (49).

Single-channel measurements were recorded at 0.75 mM Ca2+ or following an increase in the level of Ca2+ to 2.75 mM. Single-channel traces were also taken at various voltages before and after addition of the calcimimetic CaR activator, NPS R-467 (0.5 μM), or its less active stereoisomer, NPS S-467 (0.5 μM), at a level of Ca2++ of 1.0 mM. Statistical analyses of electrophysiological data were carried out using one-way analysis of variance (ANOVA). Significant treatment effects were further evaluated by Fisher's protected least-significant difference test of multiple comparisons utilizing one-way ANOVA. A P value of <0.05 was considered to indicate a statistically significant result.

RESULTS

Immunoreactivity of CaR protein in MG-63 cells using CaR-specific antibodies. To determine whether MG-63 cells express the CaR, we first performed immunocytochemistry using the immunoperoxidase technique with both affinity-purified anti-CaR antisera 4637 and monoclonal anti-CaR antibody ADD. In both cases, there was readily detectable CaR immunoreactivity located around the periphery of the cell as well as over the cytoplasm of MG-63 cells (Fig. 1, A and C). The apparent intracellular staining exhibited a cytoplasmic

![Fig. 1. Immunocytochemistry of MG-63 cells using monoclonal anti-CaR antibody ADD and affinity-purified polyclonal anti-CaR antisera 4637. A and C: immunocytochemistry using the immunoperoxidase technique with both antisera revealed strong CaR immunoreactivity in MG-63 cells, including staining of the cellular periphery as well as the cytoplasmic and perinuclear regions. B and D: staining was abolished by preincubating the 2 primary antisera with the respective peptides against which they were raised. Photomicrographs were taken at a magnification of ×400.](http://ajpcell.physiology.org/ by 10.220.33.5 on October 20, 2017)
and perinuclear distribution. With both antisera, the immunoreactivity was eliminated by preincubating the respective primary antiserum with the peptide against which it was raised (Fig. 1, B and D). To further document the plasma membrane localization of the CaR in MG-63 cells, we performed confocal fluorescence immunocolocalization of the CaR using anti-CaR antiserum 4637 as well as antibodies to each of two plasma membrane markers, ALP (located in the plasma membrane of osteoblasts) and Na\(^+\)-K\(^+\)-ATPase (Fig. 2). There was clear colocalization of CaR immunoreactivity with each of the two plasma membrane markers, documenting expression of the receptor in the plasma membrane.

We next compared the pattern of CaR immunoreactivity in MG-63 cells with that in HEKCaR cells as a positive control. Examples of confocal images of CaR immunoreactivity in the two cell types using the immunofluorescence technique with anti-CaR antiserum 4637 are shown in Fig. 3. Similar to the results obtained above using the immunoperoxidase technique, there was prominent CaR immunoreactivity associated with the plasma membrane as well as a cytoplasmic and perinuclear distribution in MG-63 cells in a section passing through approximately the middle of several cells (Fig. 3). In contrast, in HEKCaR cells, the bulk of the immunoreactivity was associated with the plasma membrane (Fig. 3).

We next performed Western analysis on proteins isolated from total cellular lysates of MG-63 cells using the 4637 antiserum and compared the results with those observed using similar protein preparations from
bovine parathyroid and HEKCaR cells as positive controls (Fig. 4). Although the levels of CaR protein expression in parathyroid and HEKCaR cells were substantially higher than that in MG-63 cells, longer exposure times revealed that the immunoreactive bands in MG-63 cells, including the doublet at ~150 and ~170 kDa, were of sizes identical to those in one or both of the two positive controls. The specificity of the CaR-immunoreactive bands was confirmed by the marked reductions in their intensities following preabsorption of the 4637 antiserum with the specific peptide against which it was raised (Fig. 4).

Detection of CaR mRNA in MG-63 cells by RT-PCR and Northern blot analysis. Figure 5A shows the results of RT-PCR performed with CaR-specific primers, which amplified a fragment of the expected size, 425 bp, for a product derived from an authentic CaR transcript (Fig. 5B, middle lane). No products were observed when the RT was omitted during synthesis of cDNA (Fig. 5A, right lane). Northern blot analysis carried out at high stringency using a CaR-specific riboprobe on poly(A)
1 RNA isolated from MG-63 cells revealed a single major transcript of ~5.2 kb (Fig. 5B), a size similar to that of the major CaR transcript in human parathyroid gland (20). DNA sequence analysis of the PCR product revealed a sequence that was 100% identical to the corresponding region of the human CaR cDNA (20) (Fig. 5C). These results show that the PCR product was amplified from authentic CaR transcript(s).

CaR-mediated activation of an outward K+ channel in MG-63 cells. To determine whether the CaR expressed in MG-63 cells is functionally linked to a biological response, we examined the effects of CaR agonists on the activity of an outward K+ channel. We have previously shown that similar K+ channels in other types of cells are directly regulated by the CaR (42). The upward deflections of the current traces represent outward currents due to efflux of K+. Raising Ca2+ from a low level (0.75 mM) at which the CaR is inactive to 2.75 mM evoked substantial activation of the channel (Fig. 6, A and B). Figure 6C shows pooled data from several such experiments, demonstrating that high Ca2+ promotes an approximate fivefold increase in the open state probability of the channel. Figure 6D shows changes in the current-voltage (I-V) relationships for the channel with alterations in the ratio of Na+ to K+ in the pipette solution. When the concentration of K+ was reduced from 140 to 5.4 mM in the pipette by substituting KCl with an equimolar amount of NaCl, the I-V curve shifted substantially to the left, indicating that the channel is predominantly permeable to K+.
We finally provided further documentation that the opening of this K^+ channel as a result of elevating Ca^{2+} is, in fact, mediated via the CaR by using a selective “calcimimetic” CaR activator, NPS R-467 (32). Addition of 0.5 mM NPS R-467 in the presence of 1 mM Ca^{2+} in the bath solution induced substantial activation of the channel (Fig. 7A). The activity of the channel at 1.0 mM Ca^{2+} ($P_o \sim 0.2$) is comparable to that observed with 0.75 mM Ca^{2+} in Fig. 6. In contrast, the same concentration of the less active stereoisomer of NPS R-467, NPS S-467, had little or no effect on channel activity (Fig. 7B). Figure 7C shows the I-V relationships of the channel under the control condition and after addition of NPS R-467 or NPS S-467, illustrating little change in the slope conductance. Therefore, the activation of the channel by NPS R-467 was principally the result of an increase in its open state probability without alterations in its selectivity or permeability for K^+. Statistical analysis showed a substantial, statistically significant increase in P_o after addition of NPS R-467, whereas NPS S-467 had no significant effect on P_o (Fig. 7D).

DISCUSSION

We decided to reevaluate the expression of the CaR in MG-63 osteoblastic cells, since in pilot studies performed before the publication of the report of Pi et al. (33), we observed robust CaR immunostaining in this cell line. Moreover, earlier studies had shown that high Ca^{2+} increases the secretion of osteocalcin by this cell line (29), indicating that MG-63 cells are capable of sensing Ca^{2+}, potentially doing so via the CaR or some other Ca^{2+}-sensing mechanism. Given the negative results of Pi et al. (33) on Western analysis as a method for detecting CaR protein in MG-63 cells using the 4637 antiserum, we repeated our earlier experiments utilizing immunostaining with this antiserum as well as with the ADD monoclonal anti-CaR antiserum used by these authors. The results of these studies indicated readily detectable CaR immunoreactivity in MG-63 cells using the immunoperoxidase technique with both antisera as well as immunofluorescence utilizing the 4637 antiserum.

It should be pointed out that a substantial amount of this CaR immunoreactivity was present intracellularly, as documented by confocal imaging, and exhibited a perinuclear and fine reticular cytoplasmic pattern of staining consistent with expression in the endoplasmic reticulum. Definitive plasma membrane localization could be documented, however, by the use of immunocolocalization via two-color confocal imaging of the CaR with two different plasma membrane markers, ALP and Na$^+$-K$^+$-ATPase. CaR immunoreactivity in CaR-transfected HEK-293 cells, in contrast, was
Fig. 6. Activation of K⁺ channels in cell-attached patches of MG-63 cells by elevating extracellular Ca²⁺ (Ca_o) from 0.75 to 2.75 mM. A: single-channel traces were taken at 2 different voltages (membrane potential (V_m)) as indicated on the traces (left) in the presence of 0.75 mM Ca_o or (B) after elevating Ca²⁺ to 2.75 mM. C: the probability of channel opening (P_o) in cell-attached patches is plotted as a function of V_m at 2 different Ca_o, 0.75 mM and 2.75 mM. Symbols and error bars are means ± SE of the mean, n = 3. D: current-voltage relationships in the presence of varying levels of K⁺ and Na⁺ (in millimolar) in the pipette solution: 140 KCl, no added NaCl (Δ); 55 KCl, 87 NaCl (○); and 5.4 KCl, 140 NaCl (x).

Fig. 7. The CaR activator NPS R-467, but not its less active stereoisomer, NPS S-467, stimulates K⁺ channel activities in MG-63 cells. A: single-channel traces were taken at 2 different voltages as indicated (left) before and after addition of 0.5 μM NPS R-467 to the extracellular bath solution containing 1.0 mM Ca_o. B: NPS S-467 (0.5 μM), the less active stereoisomer of NPS R-467, failed to elicit channel activation. C: current-voltage relationships are shown under control conditions (n = 7) and in the presence of NPS R-467 (n = 3) or NPS S-467 (n = 3). The slope conductance was 103 ± 2 pS under control conditions, 108 ± 7 pS with NPS R-467 in the bath solution, and 105 ± 6 pS in the presence of NPS S-467. D: open state probabilities, N_p, under control conditions (absence of CaR activator) or in the presence of NPS R-467 (n = 4) or NPS S-467 (n = 4) are shown. The data were taken at V_m = 70 mV.
present principally in the region of the plasma membrane. Although the reason(s) underlying the different patterns of distribution of the receptor protein in the two cell types is (are) unknown, these results raise several issues. First, it is possible that the CaR subserves some intracellular function(s) in MG-63 cells and other cells in which we have previously shown that the receptor displays substantial intracellular immunoreactivity (43, 44). Second, these observations point out that it is very important, when performing Western blotting on MG-63 cells and other cells with prominent intracellular CaR immunoreactivity (see below), to prepare total cellular lysates to improve the sensitivity of the procedure for detecting receptor protein. In contrast, in parathyroid cells and HEKCaR cells, crude membrane preparations yield the bulk of CaR immunoreactivity for Western blotting.

We could also detect CaR protein expression in MG-63 cells using Western blotting with the affinity-purified polyclonal antiserum 4637. Although it was apparent that there was considerably less CaR protein expressed in MG-63 cells than in the two positive controls, bovine parathyroid cells and HEKCaR cells, the protein bands identified in MG-63 cells were essentially identical to those in one or both of the other two cell types. Moreover, both parathyroid and HEKCaR cells showed immunoreactive bands corresponding to various glycosylated forms of CaR monomers and dimers that were essentially identical to those observed in these cells in our previous studies (1, 27). Thus we are confident that our preparation of affinity-purified anti-CaR antiserum 4637 binds to the same CaR proteins that are identified by other specific anti-CaR antisera. Moreover, given the results of our functional studies carried out using an electrophysiological approach (see below), it seems apparent that the level of authentic CaR protein expression in MG-63 cells is sufficient to activate a biological response, in this case stimulation of an outward K+ channel. We have no explanation for the failure of Pi et al. (33) to detect CaR immunoreactivity in either MG-63 or CaR-transfected HEK-cells using a preparation of affinity-purified polyclonal anti-CaR antiserum 4637 that differed from ours, which we had affinity purified ourselves. It appears most likely that their preparation of affinity-purified antiserum had deteriorated during storage.

In addition, there are several reasons why Pi et al. (33) may have been unable to detect CaR protein by Western blotting in their MG-63 cells using the ADD antiserum, which clearly detected robust receptor expression in their CaR-transfected HEK-293 cells. First, by using crude membrane preparations, they may have lost most of the CaR immunoreactivity that we found to be present in the cytoplasm and perinuclear region of these cells. Indeed, we detected substantially less CaR immunoreactivity on Western blots of MG-63 cells when crude membrane preparations rather than whole cell lysates were utilized (Kifor and Brown, unpublished observations). Second, we have found that some cells contain substantial amounts of proteases capable of rapidly degrading the CaR. It is important to utilize optimal amounts and combinations of multiple protease inhibitors and to avoid excessively high concentrations of reducing agents to minimize degradation of the receptor. Pi et al. (33) scraped their cells off the culture dishes before adding protease inhibitors and used a different combination of inhibitors as well as a relatively high concentration (5%) of a reducing agent (2-mercaptoethanol) of which its use has been associated with degradation of the CaR in our hands (45) (Kifor and Brown, unpublished observations). Furthermore, we always compare results using several different titers of an antiserum for performing immunocytochemistry and/or Western blotting in a new cell type studied for CaR expression, since with low levels of receptor expression it may be necessary to increase the titer of the antiserum severalfold to obtain optimal results. Pi et al. (33) only report the results of Western blots of MG-63 cells performed with a single concentration of antiserum ADD. Given that multiple parameters must be evaluated to optimize Western analysis of the CaR, we generally employ immunocytochemistry (combined with a method for detecting CaR transcripts, e.g., RT-PCR) as a screening method to study CaR expression in cells examined for the first time. Finally, it is, of course, possible that the CaR is not expressed in the line of MG-63 cells studied by Pi et al. (33).

Given our positive results for the detection of CaR protein expression in MG-63 cells, we then carried out both RT-PCR and Northern analysis to confirm the expression of CaR transcript(s) in this cell line. Indeed, RT-PCR amplified a band of the appropriate size for a product derived from bona fide CaR transcript(s), which was identical in its nucleotide sequence to that of the corresponding region of the human CaR cDNA. In addition, Northern analysis revealed a readily detectable transcript similar in size to a major CaR transcript previously observed in human parathyroid (20). It is of interest that Pi et al. (33) amplified a band of the appropriate size for a CaR-derived product by RT-PCR using RNA from their MG-63 cells. Moreover, Southern analysis on this PCR product using a CaR-specific probe revealed significant hybridization, although these workers were unable to confirm CaR-specific sequences on subsequent attempts to subclone and sequence this PCR product. It is unclear whether direct sequencing of this band without subcloning would have revealed CaR-specific sequence or, in fact, their line of MG-63 cells does not express CaR transcript(s).

To prove that the CaR was not only expressed in but was also functionally active in MG-63 cells, we utilized an approach that we have used in several previous studies (47–49) to document unequivocally that the receptor was functionally coupled to a biological response in various cell types using specific pharmacological probes. That is, we took advantage of the recently described selective calcimimetic CaR activator, NPS R-467, and its less active stereoisomer, NPS S-467 (32). We have previously shown that NPS R-467, but not NPS S-467 at the same concentration, activates nonselective cation channels and/or Ca2+-activated K+.
channels in several cell lines (13–15, 42). Moreover, we validated this approach further by showing that these responses to CaR activators were not present in cells derived from mice homozygous for targeted disruption of the CaR gene (22, 46–49). Indeed, the results of our present studies indicate that in MG-63 cells raising Ca2+ or addition of NPS R-467 but not NPS S-467 activates an outward K+ channel, similar to our earlier reports in other cells (12–15, 42). Thus the CaR present in the MG-63 cells employed by us is functional, at least as assessed by its coupling to activation of this K+ channel.

Therefore, our results strongly support the expression of both CaR mRNA and functional CaR protein in the MG-63 cell line studied here. These data further support our earlier results (44, 45) and those of others (25) that the CaR is expressed in several osteoblastic cell lines. We recognize, however, that MG-63 cells were originally obtained from a human osteosarcoma and may not represent an optimal model for studying the functional relevance of the CaR in osteoblasts (17). The MG-63 osteosarcoma cell line shows increases in ALP and osteocalcin expression following treatment with 1α,25-dihydroxyvitamin D\textsubscript{3} (30), which are responses characteristic of relatively undifferentiated osteoblast precursors. In contrast, another human osteoblastic cell line, SAOS-2, shows high constitutive ALP expression but little or no osteocalcin expression, either with or without addition of 1α,25-dihydroxyvitamin D\textsubscript{3} (30). The mouse osteoblastic cell line, MC3T3-E1, is known to exhibit properties of osteoprogenitor cells and preosteoblasts in their actively growing stage. Following growth arrest, however, they differentiate and develop markers of mature osteoblasts, including the expression of high levels of ALP and the capacity to form mineralized bone matrix (44). Together, our present and prior studies, which show expression of the CaR in osteoblastic cell lines differing in their phenotypes and apparent stages of differentiation, suggest that this receptor is expressed in osteoblasts varying substantially in their developmental stages.

It should be pointed out that the MG-63 cell line also retains a fibroblast-like character, with its abundant expression of type III collagen (24) and low constitutive expression of ALP (17, 30). It is of interest in this regard that McNeil et al. (31) found that rat-1 fibroblasts express the CaR. Indeed, fibroblasts arise from the same mesenchymal stem cell (8) that gives rise to several types of CaR-expressing cells involved in bone growth and/or turnover, including chondrocytes (9), osteoblasts (44, 45), and stromal cells (43). Therefore, expression of the CaR appears to be characteristic of several cell types within this lineage.

Our present and prior studies (44, 45) have clearly shown that the CaR is expressed in clonal osteoblastic cell lines. Moreover, recent studies have documented the expression of CaR mRNA and protein in osteoblasts within sections of bovine, rat, and murine bone (10), providing additional evidence that bona fide osteoblasts express the CaR. Nevertheless, it is possible that other Ca2+ sensors molecularly distinct from the CaR (34, 35) are also present in osteoblasts and participate in their cation-sensing capacity. For instance, Pi et al. (32a) have recently isolated primary osteoblast-like cells from mice with targeted disruption of the CaR that still showed mitogenic and other biological responses to polyvalent cations. Additional studies are needed, therefore, utilizing genetic models of generalized (22) or tissue-selective “knock out” of the CaR as well as techniques that downregulate the function of the endogenous osteoblastic CaR, e.g., CaR antagonists or transfection with dominant negative CaR constructs (31), to establish definitively the CaR’s role in modulating the full range of osteoblastic functions that are responsive to Ca2+. The outcome of these experiments should answer the question of whether the CaR is the principal Ca2+ sensor in osteoblasts and/or whether they possess other Ca2+ sensors/receptors that also contribute to the regulation of osteoblast function by Ca2+.

The authors gratefully acknowledge generous grant support from National Institute of Diabetes and Digestive and Kidney Diseases Grants DK-41415, DK-48330, and DK-52005, NPS Pharmaceuticals, The St. Giles Foundation, and the National Space Bioscience Research Institute (to E. M. Brown), the Mochida Memorial Foundation Grant for Medical and Pharmaceutical Research (to T. Yamaguchi), and the Yamanouchi Foundation Grant for Research on Metabolic Disorders (to T. Yamaguchi).

Present address of T. Yamaguchi: Third Div., Dept. of Medicine, Kobe Univ. School of Medicine, Kobe 650-0017, Japan.

REFERENCES

39. Vassilev PM, Ho-Pao CL, Kanazirska MP, Ye C, Hong K, Seidman CE, Seidman JG, and Brown EM. Ca2+-sensing receptor (CaR)-mediated activation of K+ channels is blunted in CaR gene-deficient mouse neurons. *Neuroreport* 8: 1411–1416, 1997.

49. Ye C, Rogers K, Bai M, Quinn SJ, Brown EM, and Vassilev PM. Agonists of the Ca2+-sensing receptor (CaR) activate nonselective cation channels in HEK293 cells stably transfected with the human CaR. *Biochem Biophys Res Commun* 226: 572–579, 1996.