Cyclic nucleotide-gated cation channels mediate sodium and calcium influx in rat colon

W. QIU, B. LEE, M. LANCASTER, W. XU, S. LEUNG, AND S. E. GUGGINO
Division of Gastroenterology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205

Qiu, W., B. Lee, M. Lancaster, W. Xu, S. Leung, and S. E. Guggino. Cyclic nucleotide-gated cation channels mediate sodium and calcium influx in rat colon. Am. J. Physiol. Cell Physiol. 278: C336–C343, 2000.—We found mRNA for the three isoforms of the cyclic nucleotide-gated nonselective cation channel expressed in the mucosal layer of the rat intestine from the duodenum to the colon and in intestinal epithelial cell lines in culture. Because these channels are permeable to sodium and calcium and are stimulated by cGMP or cAMP, we measured 8-bromo-cGMP-stimulated sodium-mediated short-circuit current (I\textsubscript{sc}) in proximal and distal colon and unidirectional \(^{45}\text{Ca}^{2+} \) fluxes in proximal colon to determine whether these channels could mediate transepithelial sodium and calcium absorption across the colon. Sodium-mediated I\textsubscript{sc} stimulated by 8-bromo-cGMP, were inhibited by dichlorobenzamil and I\textsubscript{cis}-diltiazem, blockers of cyclic nucleotide-gated cation channels, suggesting that these ion channels can mediate transepithelial sodium absorption. Sodium-mediated I\textsubscript{sc} and net transepithelial 45\text{Ca}^{2+} absorption were stimulated by heat-stable toxin from Escherichia coli that increases cGMP. Addition of I\textsubscript{cis}-diltiazem inhibited the enhanced transepithelial absorption of both ions. These results suggest that cyclic nucleotide-gated cation channels simultaneously increase net sodium and calcium absorption in the colon of the rat.

sodium absorption; calcium absorption; cation channels

UNDER CONDITIONS OF SALT restriction or when aldosterone is elevated, sodium-mediated short-circuit current (I\textsubscript{sc}) across the distal colon is blocked by apical addition of amiloride (20, 31, 32). The channel mediating this sodium transport is the amiloride-sensitive sodium channel (ENaC) (3, 4). In other portions of the intestine, for example, the proximal colon and the ileum, sodium absorption is mediated via the electroneutral sodium-proton exchanger (NHE) (19, 26). ENaC (27) and NHE (15) have been cloned, and the mRNA and protein have been identified in the epithelia of the intestinal mucosa. However, the molecular mechanisms underlying calcium entry and transepithelial calcium absorption are less clear. Although there is evidence for vesicle entry mechanisms (22), calcium entry via ion channels has also been implicated (25, 30).

To determine whether cyclic nucleotide-gated (CNG) cation channels might mediate sodium and calcium entry in the intestine, we evaluated the distribution of mRNA for the three isoforms of the cyclic nucleotide-gated cation channel in the intestine and in cultures of intestinal cell lines. We investigated the effect of 8-bromo-cGMP (8-Br-cGMP)-mediated stimulation and transport inhibition by blockers of cyclic nucleotide-gated cation channels on sodium-mediated I\textsubscript{sc} and \(^{45}\text{Ca}^{2+} \) fluxes in the rat colon, because the secondary subunit that increases calcium permeability (5) is expressed in this segment.

Cyclic nucleotide-gated cation channels are not voltage-dependent but are gated directly by micromolar amounts of cyclic nucleotides (cAMP and/or cGMP). These channels are equally selective for sodium and potassium and exhibit a large conductance (25 pS) in monovalent cation solutions and a smaller conductance in the presence of calcium (13, 14, 17, 24). The channels are blocked by I\textsubscript{cis}-diltiazem and dichlorobenzamil (23) but are rather insensitive to amiloride (13). With use of RNase protection assay and in situ hybridization (8), the presence of a cyclic nucleotide-gated cation channel was documented in rat lung airway epithelia. In primary cultures of rat tracheal airway epithelial cells, a sodium-mediated 8-Br-cGMP-stimulated I\textsubscript{sc} was inhibited by I\textsubscript{cis}-diltiazem and dichlorobenzamil, suggesting that this channel contributes to transepithelial sodium transport in this epithelium (28). Thus cyclic nucleotide-gated cation channel mRNAs are expressed in all segments of the intestine and that these channels mediate apical calcium and sodium entry and transepithelial transport of these ions across the colon of the rat.

METHODS

Animal Treatments

Male Sprague-Dawley rats (200–250 g; Charles River, Wilmington, MA) were fed a standard rat chow (0.8 g NaCl/kg) or a low-salt (0.02 g NaCl/kg) diet (Laboratory Animal Diet, PMI Feeds, St. Louis, MO) for 2 wk. Evaluation of serum aldosterone and corticosterone levels in control animals showed that the aldosterone level was 14.5 ± 8.5 ng/dl (n = 4). Animals fed the low-salt diet showed an increase in aldosterone to 1,624 ± 251 ng/dl (n = 5). Animals were killed and used for transport studies described below, or
intestinal segments, including duodenum, jejunum, ileum, and ascending and descending colon, were isolated and perfused with saline solution, then the mucosal layer of each segment was gently scraped from the underlying muscle layer with a clean glass slide. The mucosal scrapes were placed in TRIzol (GIBCO BRL, Gaithersburg, MD), homogenized (Polytron), and frozen at −80°C until RNA was made.

\[I_{sc} \]

Male Sprague-Dawley rats (200 g) were killed with an overdose of pentobarbital sodium, and the colon was isolated in a solution of (in mM) 114 NaCl, 5 KCl, 1.65 NaH2PO4, 1.25 CaCl2, 1.1 MgCl2, 5 HEPES, and 10 glucose (pH 7.4). The proximal or distal colon was quickly stripped of its serosal layer and mounted in Ussing chambers (model CHM2 with a 9-mm-diameter opening (63.6-mm² area; World Precision Instruments, Sarasota, FL)); the chamber was warmed to 37°C with a heated circulating water bath. For \(I_{sc} \) measurements, the apical and basolateral solutions were nominally chloride and bicarbonate free. This \(I_{sc} \) solution was composed of (in mM) 76 Na2SO4, 3.3 K2SO4, 1.65 NaH2PO4, 1.25 CaSO4, 1.1 MgSO4, 5 HEPES, and 10 glucose (pH 7.4). The chamber was connected to a voltage-current clamp (model DVC-1000, World Precision Instruments), and \(I_{sc} \) was measured while voltage was clamped at 0 mV. The initial \(I_{sc} \), along with the initial potential difference, was measured as soon as the epithelium was mounted. From this measurement, the initial \(I_{sc} \) was calculated. The resistance of the epithelium was also measured at the end of the experiment, and if it changed >15% from the initial value, the experiment was discarded. For the data from normal rats in Table 1 or 3, the current just before addition of agents that increased 8-Br-cGMP (basal \(I_{sc} \)) was recorded again, and this current was set at 100 as the normalized current for each epithelium. The resistance was also measured for each current as an increase or decrease compared with the same normalized current, i.e., 100, before the treatments. The averaged normalized currents are expressed as means ± SE.

\[^{45}\text{Ca}^{2+} \text{ Fluxes} \]

The proximal colon was isolated, and two portions from the same animal were mounted in Ussing chambers, as described above for \(I_{sc} \). The resistance of the epithelium for the unidirectional mucosal-to-serosal flux \((J_{m}) \) was matched for resistance within 15% to the epithelium from the same animal that was used for the unidirectional serosal-to-mucosal flux \((J_{sm}) \). About 2 µCi/ml of \(^{45}\text{Ca}^{2+} \) were added to the mucosal side to measure \(J_{ms} \), or the same amount of \(^{45}\text{Ca}^{2+} \) was added to the serosal side to measure \(J_{sm} \). After a 15-min isotope equilibration period, \(^{45}\text{Ca}^{2+} \) samples were taken from the opposite side every 10 min. Three control \(^{45}\text{Ca}^{2+} \) samples were collected, three more samples were collected after addition of heat-stable toxin from Escherichia coli (STA), and a final three samples were collected after addition of l-cis-diltiazem. The difference in the counts per minute (cpm) of the three time periods was averaged. This average value, collected over 10 min, was multiplied by 0.6 to give the counts per minute per hour. Because the area of the chamber opening was 63.6 mm², this average value (cpm/h) was multiplied by 1.57 to give the average counts per minute per centimeter squared per hour. This average value (cpm·cm⁻²·h⁻¹) was divided by the specific activity in counts per minute per mole to give the flux in micromoles per centimeter squared per hour. To convert net flux to current, the net flux (µM·cm⁻²·h⁻¹) was multiplied by the Faraday constant (96,500 C/mol) and divided by 3,600 to convert the hours to seconds and multiplied by the charge of calcium to give the current in coulombs per centimeter squared per second or amperes per centimeter squared.

\[\text{Materials} \]

2′,4′-Dichlorobenzamil was synthesized through the National Institute of Mental Health Chemical Synthesis Program (Research Biochemicals, Natick, MA) and has been shown previously to block cyclic nucleotide-gated cation channels (23). l-cis-Diltiazem was obtained from Tanabe (Saitama, Japan) and from Research Biochemicals. Amiloride and phenamil methane sulfonate were obtained from Research Biochemicals. 8-Br-cGMP was obtained from two sources: for experiments in Table 1, rows 1 and 2, the supplier was Sigma Chemical (St. Louis, MO); for experiments in Table 1, rows 3–5, 8-Br-cGMP gave a greater response at the same 2 mM dose and was supplied by BioLog Life Science Institute (La Jolla, CA). STa was purchased from Sigma Chemical.

\[\text{Cell Lines} \]

All cells were grown to confluence following standard culture procedures according to American Type Culture Collection methods. HT-29C and T84 are human colonic carcinoma cells that secrete chloride. HT-29 cells were cultured in DMEM with 10% fetal bovine serum, 10 µg/ml transferrin, 50 U/ml penicillin, and 50 µg/ml streptomycin. T84 cells were cultured in a 50:50 mixture of DMEM-Ham’s F-12 with 10% fetal bovine serum, 50 U/ml penicillin, and 50 µg/ml streptomycin. IEC-6 and IEC-18 cells are rat normal small intestine and rat ileum epithelial cell lines, respectively. IEC-6 and IEC-18 cells were cultured in DMEM with 5% fetal bovine serum, 0.1 U/ml insulin, 50 U/ml penicillin, and 50 µg/ml streptomycin. Panc-1 was a permanent epithelial cell line established from a pancreatic carcinoma of duct origin. CFPAC is a pancreatic duct epithelial cell line established from a cystic fibrosis patient with pancreatic carcinoma. These cells were cultured in DMEM with 10% fetal bovine serum, 50 U/ml penicillin, and 50 µg/ml streptomycin. At 2 days–1 wk after confluence, cells were rinsed in Hanks’ buffer, scraped into TRIzol, and homogenized by shaking.

\[\text{RT-PCR} \]

Total RNA was isolated following the TRIzol protocol (GIBCO BRL), then dissolved in 0.01% diethylpyrocarbonate-treated water. The optical density at 260/280 nm was measured to determine the concentration and purity (ratio 1.7–1.9). First-strand cDNA was reverse transcribed using the SuperScript preamplification system for first-strand cDNA synthesis kit (GIBCO BRL). Each PCR of 50 µl was composed of 2 or 5-10 µl of first-strand cDNA, 1× PCR buffer (pH 9.0), 2.5 mM Mg²⁺ hot wax beads (Invitrogen, San Diego, CA), 0.2 mM dATP, dCTP, dGTP, and dTTP, 0.25–0.5 µM channel primers, 0.25–0.5 µM β-actin primers, and 2.5 units of Taq DNA polymerase (Boehringer Mannheim, Indianapolis, IN). A master mix composed of primers, deoxyribophosphates, and Taq polymerase was premixed and then added to Eppendorf tubes to which the cDNA or water was added. The master mix ensured that each cDNA was exposed to equal concentrations of reaction mixture components. RT-PCR (denaturation at 94°C for 1.0 min, annealing at 55–65°C for 1.0 min, and extension at 72°C for 1.0 min) was performed with a DNA thermal cycler (model 480, Perkin-Elmer, Norwalk, CT). RT-PCR products were analyzed by electrophoresis in a 2% agarose gel, then extracted for sequencing. For RT-PCR involving degenerate primers, the initial five cycles of anneal-
A
\[\text{M E O D J I C WB} \]

B
\[\text{M HRL HT29 T84 Caco2 WB} \]

C
\[\text{M IEC6 IEC18} \]

D
\[\text{M WB Panc CF} \]

Fig. 1. A: RT-PCR products of \(\alpha \text{CNG1} \) amplified from rat intestinal epithelium. Lane 1, 100-bp molecular-weight ladder (M). Most intense band in middle of ladder is 600-bp marker. Amplification of product with primers specific for \(\alpha \text{CNG1} \) from rat eye (E) shows an RT-PCR product with an intense band at 442 bp (lane 2). There is no \(\alpha \text{CNG1} \) in olfactory library (O). RT-PCR products show that message for \(\alpha \text{CNG1} \) is present in rat duodenum (D), jejunum (J), ileum (I), and colon (C). B: RT-PCR products of \(\alpha \text{CNG1} \) from HT-29C1 and T84 cells. Lane 1, dX 174 RF DNA/Hae III molecular-weight ladder showing base-pair markers from top to bottom as follows: 1353, 1018, 872, 603, 310, 281, 234, 194, 118, and 72. PCR product for \(\alpha \text{CNG1} \) from HT-29C1 and T84 cells. Lane 1, dX 174 RF DNA/Hae III molecular-weight ladder showing base-pair markers from top to bottom as follows: 1353, 1018, 872, 603, 310, 281, 234, 194, 118, and 72. PCR product for \(\alpha \text{CNG1} \) from HT-29C1 and T84 cells. C: RT-PCR products of \(\alpha \text{CNG1} \) from IEC-6 and IEC-18 cells. Lane 1, 100-bp ladder showing base pairs 600, 500, and 400. Lanes 2 and 3, RT-PCR products of 442-bp \(\alpha \text{CNG1} \). Expression in these cell lines correlates with expression in small intestinal scrapes, suggesting that channel is expressed in epithelial cells. D: RT-PCR products of \(\alpha \text{CNG1} \) from Panc-1 and CFPAC-1 cells. Lane 1, dX 174 RF DNA/Hae III molecular-weight ladder showing base-pair markers from top to bottom as follows: 1353, 1018, 872, 603, 310, 281, 234, 194, 118, and 72. RT-PCR product for \(\alpha \text{CNG1} \) amplified using specific primers is 421 bp. Message levels were greater in cystic fibrosis (CF) cell line, although both cell lines originate in pancreatic duct. WB, water blank.

Priming was done at 37°C, then the temperature was shifted to 40, 45, and 50°C, each for 5 cycles and to 55°C for the last 20 cycles.

Primers

Primers for \(\beta \text{-actin} \) were TATGCAACACAGTGGCTTG (bp 2760–2782) and TACTCCGTTGCTGCATCC (bp 3089–3076). This set of primers was chosen to span an intron to check for contamination with genomic DNA. The \(\beta \text{-actin} \) RT-PCR product derived from RNA is 217 bp; the product from genomic DNA is 329 bp. Although the data are not shown, RT-PCR for actin was performed on all intestinal segments, and no contaminating genomic cDNA was found. Primers chosen for \(\gamma \text{CNG1} \) did not amplify \(\gamma \text{CNG2} \) from rat olfactory library or \(\gamma \text{CNG3} \) from rat kidney, heart, or testis, as verified by sequencing. Choosing the primers in areas where there were deletions in the \(\gamma \text{CNG2} \) and \(\gamma \text{CNG3} \) isoforms gave this specificity. In this manner, the RNA for each of the three channel isoforms could be distinguished in each segment. This is more difficult with a Northern blot, because the mRNA for \(\gamma \text{CNG3} \) and \(\gamma \text{CNG1} \) are very close in size; therefore, it is difficult to distinguish these in a Northern blot (8). Primers for \(\gamma \text{CNG1} \) were TGGTTGACTACCTGTGGACTAACAA (bp 1282–1307) and GCTTCATAGGTCATCTTCTTTT (bp 1724–1715). Primers for \(\gamma \text{CNG2} \) were AAGGATTAGGAGTAGCTTATTTTGCAT (bp 1042–1067) and GCTTACACTGGAATGCAT (bp 1550–1525). Rat \(\gamma \text{CNG3} \) was sequenced from kidney with use of degenerate primers based on the sequence for bovine \(\gamma \text{CNG3} \), then specific primers for \(\gamma \text{CNG3} \) were designed on the basis of the partial rat sequence. The primers correspond to the bovine nucleotide sequence GCTAACAGGAACAGTTGGATGAAAAA (bp 1665–1690) and TCCGGAATCTCGTGGGTCATCTT (bp 2107–2082) (2). The primers for \(\gamma \text{CNG2} \) were TACGAGCTAGGGCTGACCATCGACT (bp 1550–1525). A human retinal library used to amplify message for \(\gamma \text{CNG1} \) was provided by Jeremy Nathans (Howard Hughes Institute, The Johns Hopkins University). A rat olfactory library used to amplify message for \(\gamma \text{CNG2} \) was provided by Randall Reed (Howard Hughes Institute, The Johns Hopkins University). All PCR products yielded a single band, which was extracted from the gel and sequenced in both directions at the Johns Hopkins Core Facility. All PCR products were of the expected size and sequence compared with published message sequence, except \(\gamma \text{CNG3} \) from rat, which has not been sequenced, except in bovine kidney.
CNG3 M D J I PC DC K H K

Fig. 3. RT-PCR products of αCNG3 from rat intestinal epithelial segments. Lane 1, molecular-weight marker with most intense band at 600 bp. Lane 2, RT-PCR product from eye (E); retinal cone cells have CNG3 (16). Lane 3, no RT-PCR product in olfactory library (O), which indicates that primer does not amplify CNG2. Lane 4, abundant product from kidney (K), where CNG3 channel message was shown by Northern blot (2); this channel is also expressed in lung (L). Lanes 6 and 7, RT-PCR from intestinal segments, including duodenum (D), jejunum (J), ileum (I), and colon (C). Expected product size for CNG3 is 442 bp. WB did not show any PCR product.

RESULTS

To determine whether cyclic nucleotide-gated cation channels might contribute to transepithelial sodium transport across intestinal epithelia, we investigated the distribution of mRNA for the three isoforms in all intestinal segments of the rat and in pancreatic and intestinal cell culture lines. Figure 1A shows that αCNG1 mRNA is expressed in the mucosa of the duodenum, jejunum, ileum, and colon. The mRNA is shown in comparison to that in the eye, where mRNA for αCNG1 has been measured previously by Northern blot (17). No mRNA for CNG1 was amplified from rat olfactory library, where αCNG1 is not present (7). Message for αCNG1 is also expressed in HT-29 and T84 cells (Fig. 1B), as well as in IEC-6 and IEC-18 cells (Fig. 1C) and the pancreatic cell lines Panc-1 and CF-PAC-1 (Fig. 1D), when RT-PCR is used to show expression of mRNA transcripts. The mRNA found in these cell lines suggests that the cDNA amplified from the mucosal layer represents mRNA from epithelial cells.

Figure 2 shows that mRNA for αCNG2 is mainly restricted to the mucosa of the duodenum and ileum. The small amount of message for CNG2 detected in the eye has not previously been reported in rods and cones, where CNG1 and CNG3 are abundant (16). Sequencing of the RT-PCR product confirmed that it was CNG2. Expression of CNG2 in rat eye may represent message from the retinal pigment epithelium or cells other than those involved in sensing light. The highest expression of CNG2 is in olfactory organ library. This channel was cloned from the olfactory organ, where expression of CNG2 has been measured previously by Northern blot (7).

Restriction analysis of plasmid preparations after RT-PCR by use of degenerate primers in intestinal segments and cell lines revealed nine CNG1 plasmids and six CNG2 plasmids in the ileum. For the colon, 10 plasmids were shown to be CNG1 and 6 were CNG2. For HT-29 cells, nine plasmid preparations had CNG1

Fig. 4. Northern blot analysis of αCNG3 mRNA expression in rat intestinal segments. Top: autoradiogram of blot showing specific hybridization of CNG3 probe at 4.2 kDa. D, duodenum RNA; J, RNA from jejunum; I, RNA from ileum; PC and DC, proximal and distal colon RNA; K, rat kidney RNA; H, heart RNA. K (far right), 2nd homogenate of kidney from another rat. Previous reports showed that mRNA for this channel is ~4.2 kb (2), which corresponds to size shown here. Film was exposed for 6 h at −80°C. Bottom: methylene blue stain of blot showing complete transfer of nearly equal amounts of RNA in each lane. 40 µg of total RNA were loaded in each lane. In a previous report (2) of CNG3 mRNA in kidney, 10 µg of poly(A)+ RNA were used and film was exposed for 7 days.
and two contained CNG2. Sequencing of clones from rat ileum also revealed that nine were CNG1 and six were CNG2, and sequencing revealed eight CNG1 and four CNG2 clones in rat colon. Sequencing of 11 of 15 clones from the HT-29 library suggested that 9 were CNG1 and 2 were CNG2. These results suggest that CNG1 and CNG2 are expressed in multiple intestinal segments. We previously reported that CNG1 mRNA is expressed in the lung (8) and airway cells (trachea, bronchus, bronchioles, and alveoli) and mediates electrogenic transepithelial sodium absorption across tracheal epithelial cells (28). The degenerate primers used here did not amplify CNG3, which is also expressed in all the intestinal segments (Fig. 3). The kidney expresses high levels of CNG3, as previously reported (2). CNG3 is expressed in all the intestinal segments (Fig. 3). The kidney expresses high levels of CNG3, as previously reported (2).

Table 1. Effect of 8-Br-cGMP on I_sc in normal rat proximal colon

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>PD,</th>
<th>l_sc,</th>
<th>R_i,</th>
<th>8-Br-cGMP</th>
<th>l-cis-diltiazem</th>
<th>Dichlorobenzamil</th>
<th>Amiloride</th>
<th>Phenamil</th>
<th>DMSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mV</td>
<td>µA/cm²</td>
<td>Ω·cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>10</td>
<td>15.0±1.36</td>
<td>83.4±6.4</td>
<td>245.6±12.8</td>
<td>100</td>
<td>124.6±5.2</td>
<td>101.7±3.1†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8-Br-cGMP</td>
<td>10</td>
<td>12.7±4.8</td>
<td>78.8±11.9</td>
<td>186.1±14.0</td>
<td>100</td>
<td>127.4±10.8*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>l-cis-diltiazem</td>
<td>10</td>
<td>11.8±2.6</td>
<td>77.9±12.8</td>
<td>212.9±13.6</td>
<td>100</td>
<td>167.2±17.8*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dichlorobenzamil</td>
<td>10</td>
<td>12.9±2.0</td>
<td>81.8±12.9</td>
<td>238.6±21.8</td>
<td>100</td>
<td>142.1±16.0*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Amiloride</td>
<td>10</td>
<td>8.4±1.4</td>
<td>56.0±11.7</td>
<td>254.8±35.7</td>
<td>100</td>
<td>145.4±10.6*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phenamil</td>
<td>10</td>
<td>6.4±1.4</td>
<td>56.0±11.7</td>
<td>254.8±35.7</td>
<td>100</td>
<td>145.4±10.6*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td>10</td>
<td>3.1†</td>
<td>15.0±1.36</td>
<td>83.4±6.4</td>
<td>245.6±12.8</td>
<td>100</td>
<td>124.6±5.2</td>
<td>101.7±3.1†</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are means ± SE; n, number of animals. Proximal colons were treated with 2 mM 8-bromo-cGMP (8-Br-cGMP), 200 µM l-cis-diltiazem, 30 µM dichlorobenzamil, 100 µM amiloride, 100 µM phenamil, or 30 µl of DMSO. PD, potential difference measured when colon was first mounted; l_sc, initial short-circuit current measured when colon was first mounted; R_i, initial resistance. At beginning of experimental period, just before addition of 8-Br-cGMP, I_sc was standardized to 100 and called basal I_sc. I_sc, 8-Br-cGMP, stable current measured after addition of 8-Br-cGMP; all other currents, e.g., l-cis-diltiazem, were stable currents measured after addition of drugs. *Significantly different from basal (P < 0.05); †significantly different from 8-Br-cGMP (P < 0.05); ‡not significantly different from 8-Br-cGMP (P > 0.1, by 2-tailed Student’s t-test).
Table 2. Effect of STa and l-cis-diltiazem on 45Ca2+ fluxes in rat proximal colon

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>STa</th>
<th>STa + l-cis-diltiazem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0–30 min)</td>
<td>(30–60 min)</td>
<td>(30–90 min)</td>
</tr>
<tr>
<td>Isc Na, µA/cm²</td>
<td>65 ± 7.6</td>
<td>90 ± 9.4a</td>
<td>57 ± 6.4b</td>
</tr>
<tr>
<td>Jmax, nm·cm²·h⁻¹</td>
<td>89 ± 13.5</td>
<td>218 ± 18.6c</td>
<td>132 ± 20.6d</td>
</tr>
<tr>
<td>Jnet, nm·cm²·h⁻¹</td>
<td>142 ± 4.5</td>
<td>267 ± 3.3</td>
<td>347 ± 5.79</td>
</tr>
<tr>
<td>If, µA/cm²</td>
<td>82 ± 13.5</td>
<td>178 ± 18.6c</td>
<td>74.9 ± 16.7f</td>
</tr>
<tr>
<td>If, Ca, µA/cm²</td>
<td>4.4 ± 0.7</td>
<td>9.5 ± 1.0e</td>
<td>4.0 ± 0.9d</td>
</tr>
</tbody>
</table>

Values are means ± SE; n = 6. Heat-stable toxin from Escherichia coli (STa, 2 µg/10 ml) and l-cis-diltiazem (200 µM) were added to apical side, Jmax and Jnet, unidirectional fluxes of 45Ca2+ in mucosal-to-serosal and serosal-to-mucosal directions, respectively; Jnet = Jmax – Jnet, ISC Na, ISC in chloride-free media; ISC Ca, ISC of calcium calculated from Jnet; a significantly different from control (P < 0.005); b significantly different from STa (P < 0.05); c significantly different from control (P < 0.01); d significantly different from STa (P < 0.05); e significantly increased (P < 0.05, by paired t-test) compared with control.

Table 3. Effect of 8-Br-cGMP on ISC in rat distal colon

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>PD,i, mV</th>
<th>ISC,i, µA/cm²</th>
<th>R,i, Ω/cm²</th>
<th>ISC</th>
<th>Basal</th>
<th>Amiloride</th>
<th>8-Br-cGMP</th>
<th>l-cis-Diltiazem</th>
<th>Dichlorobenzamil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>11</td>
<td>6 ± 1.6</td>
<td>38 ± 8.7</td>
<td>236 ± 32.9</td>
<td>100</td>
<td>120 ± 4.2</td>
<td>96 ± 7.5f</td>
<td>100</td>
<td>116 ± 3.6</td>
<td>102 ± 3f</td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>9 ± 1.5</td>
<td>65 ± 9.0</td>
<td>196 ± 18.8</td>
<td>100</td>
<td>116 ± 3.6</td>
<td>102 ± 3f</td>
<td>100</td>
<td>109 ± 3.7</td>
<td>97 ± 2.4f</td>
</tr>
<tr>
<td>Low salt diet†‡</td>
<td>9</td>
<td>27 ± 5.6</td>
<td>210 ± 23.7</td>
<td>198 ± 23.3</td>
<td>177 ± 19.8</td>
<td>100</td>
<td>109 ± 3.7</td>
<td>97 ± 2.4f</td>
<td>100</td>
<td>116 ± 3.6</td>
</tr>
</tbody>
</table>

Values are means ± SE; n, number of animals. Animals were fed normal diet containing sodium or low-salt diet (NaCl-deficient diet) and distilled water for >14 days. Distal colon was treated with 10 µM amiloride, 2 mM 8-Br-cGMP, 200 µM l-cis-diltiazem, or 30 µM dichlorobenzamil. See Table 1 footnote for definition of abbreviations. * Significantly different from basals (P < 0.05); † significantly different from 8-Br-cGMP (P < 0.05); ‡ significantly different from amiloride (P < 0.05, by 2-tailed Student’s t-test).

DISCUSSION

Intestinal epithelial cells absorb sodium via electro-neutral or electrogenic uptake at the apical membrane and extrude sodium at the basolateral membrane via the Na⁺-K⁺-2ATPase. The major fraction of sodium delivered to the small intestine and proximal colon is absorbed via the electroneutral NHE (6, 19, 26), whereas the distal colon mediates electrogenic transepithelial sodium absorption via ENaC under conditions of a low-salt diet (20, 31, 32). Sodium entry and electrogenic sodium absorption via ENaC is increased when circulating aldosterone is high (32) as a result of low salt intake (31). The cloned ENaC is the most completely studied epithelial sodium channel (3, 4). We now show that mRNA for the cyclic nucleotide-gated cation channel αCNG1 is expressed in the mucosa of all intestinal segments, in several intestinal epithelial cell lines, and in two pancreatic cell lines. Other isoforms, CNG2 and CNG3, and the secondary subunit βCNG are also present in intestinal mucosa, suggesting that these channels may also mediate electrogenic sodium and calcium currents into intestinal epithelial cells.

In the proximal and distal colon, cyclic nucleotide-gated cation channels carry an 8-Br-cGMP-stimulated, sodium-mediated ISC that is inhibited by l-cis-diltiazem. The current stimulated by cGMP is not inhibited by amiloride, suggesting that ENaC does not carry this current. Likewise, phenamil, a more potent blocker of ENaC than amiloride, did not inhibit the 8-Br-cGMP-stimulated, sodium-mediated ISC in the proximal colon, whereas dichlorobenzamil did inhibit the ISC. These results are consistent with previous data (31) which suggest that ENaC does not carry an amiloride-sensitive sodium current in the proximal colon of the rat. The transepithelial sodium transport carried by cyclic nucleotide-gated cation channels in the colon is less in magnitude than aldosterone-induced, ENaC-mediated sodium absorption in the distal colon (31, 32) or electroneutral sodium absorption mediated by NHE in the proximal colon (6), but these other pathways are specific for sodium. Opening of cyclic nucleotide-gated cation channels mediates the current abolished by amiloride, phenamil, or dichlorobenzamil. This increased current was inhibited by l-cis-diltiazem (Table 3), which does not block ENaC channels.
mediated cGMP, in the absence of chloride, increases sodium-surface distribution of this receptor (29). Likewise, the role of guanylin in the surface epithelia of mediated chloride secretion from intestinal crypts (11).

The receptors for STa and guanylin are distributed from the crypt-to-villus axis along the entire intestine (21, 29). The role of these receptors in transepithelial transport or signal transduction in the villus tip is not clearly defined, but the major localization of guanylate cyclase is in the brush border (29). Guanylin and STa act in the small and large intestine to increase cGMP-mediated chloride secretion from intestinal crypts (11). Likewise, the role of guanylin in the surface epithelia of the colon is not well defined, but this segment also has a surface distribution of this receptor (29).

It was previously shown in porcine distal colon that cGMP, in the absence of chloride, increases sodium-mediated I_{SC} and inhibits electroneutral sodium chloride absorption, as measured by 22Na flux (10). Similarly, atrial natriuretic peptide in this preparation inhibits electroneutral sodium chloride absorption via cGMP- and calcium-mediated mechanisms (1). Extracellular calcium, as well as protein kinase C, was previously shown to activate particulate guanylate cyclase activity in rat colon (18). Thus a calcium influx mediated by cyclic nucleotide-gated cation channels would be expected to enhance increases in cGMP caused by the action of STa in the colon.

Although we did not measure transepithelial 22Na fluxes in the small intestine, inhibition of NHE by calcium is well documented (9). Because the mRNA for cyclic nucleotide-gated cation channels also exist in the ileum, it is likely that increased influx of calcium stimulated by cGMP could inhibit transepithelial sodium absorption via NHE in the small intestine and/or enhance chloride secretion in this segment. Our experiments predict that STa, by increasing calcium influx via cyclic nucleotide-gated cation channels, would act to alter sodium absorption or chloride secretion along the entire intestine. Increases in intracellular calcium are not usually associated with the action of STa on chloride secretion (11), but it is more difficult to measure small increases in intracellular calcium, such as those mediated by calcium influx, than to measure the large increases caused by release of calcium from intracellular stores related to inositol trisphosphate (12).

In summary, we have documented, for the first time, that mRNA of the three isoforms of cyclic nucleotide-gated cation channels exist in intestinal mucosa from the duodenum to the distal colon. The finding that the mRNA is also present in intestinal and pancreatic epithelial cell lines is evidence that these channels reside in the epithelial cells. In addition, functional transport assays suggest that these channels mediate transepithelial calcium and sodium across the proximal and distal colon; this transepithelial transport also implies that these channels reside in transporting epithelial cells. Because these channels exist along the entire intestinal tract, we speculate that they are poised to enhance cGMP-mediated activation of guanylate cyclase activity that would inhibit sodium absorption or stimulate chloride secretion, if these channels are expressed along the whole crypt-to-villus axis.

We thank Drs. S. Khurana and J. Wright for helpful discussions regarding flux analysis.

This work was funded by National Institute of Diabetes and Digestive and Kidney Diseases Grants DK-44648 (to S. E. Guggino) and DK-48977 (to S. E. Guggino), Cystic Fibrosis Foundation Grant P977 (to S. E. Guggino), and the Johns Hopkins Institutional Research Grant Project (to S. E. Guggino). W. Qiu was supported by a fellowship from the Cystic Fibrosis Research Development Training Program. B. Lee was awarded a Student Research Fellowship Award from the American Digestive Health Foundation.

Address for reprint requests and other correspondence: S. E. Guggino, 929 Ross Bldg., 720 Rutland Ave., Baltimore, MD 21205 (E-mail: sguggino@jhmi.edu).

Received 14 April 1999; accepted in final form 20 October 1999.

REFERENCES

