Numerous studies have been carried out in recent years to investigate the effects of hemorrhagic shock, alone or in conjunction with soft tissue trauma, on cell-mediated and humoral immunity (2, 7, 19–21, 28). Such studies have clearly indicated a marked depression of host immune functions following hemorrhagic shock, which were detectable immediately after the hypotensive period and persisted for a prolonged period of time (2, 19, 20). Soft tissue trauma per se is also known to cause a severe depression of cell-mediated and humoral immune function (1, 21). In view of the above, it is not surprising that the combination of soft tissue trauma and hemorrhagic shock produces a more sustained depression of immune functions (7, 21, 28).

Significant endocrine alterations have been reported following major blood loss, including increased release of adrenocorticotropic hormone, corticosterone, and β-endorphin (15). Despite the fact that gender differences in the susceptibility to and morbidity from sepsis have been observed in several clinical and epidemiological studies (5, 6, 14), the alterations in endocrine and immune functions have been investigated primarily using male laboratory animals. Immune function in normal males and females has been reported to be influenced by sex steroids (10). In this regard, it appears that better-maintained immune functions in females are due not only to physiological levels of androgens but also at least in part due to the absence of immunosuppressive male androgenic hormones (13). A number of clinical and experimental studies have shown the suppressive effects of androgens on immunity (13, 17, 22, 24). For instance, it has been reported that not only the peripheral B cell fraction is enlarged in androgen-deficient mice but that the production of interleukin-2 (IL-2) and interferon-γ is increased in peripheral T cells (22). Moreover, in a murine model of lupus erythematosus, survival was prolonged by androgen therapy (17). On the other hand, accelerated death from lupus was observed when the androgen receptor blocker flutamide was administered (24). Furthermore, recent immunological studies suggest beneficial effects of castration on splenocyte immune function after soft tissue trauma and hemorrhagic shock (26).

Nonetheless, it remains unknown whether androgens are also involved in depressing macrophage-dependent immune function following trauma-hemorrhage. It also remains unknown whether castration (i.e., testosterone depletion) before trauma-hemorrhage has any salutary effects on macrophage immune function following soft tissue trauma and hemorrhagic shock. This appears to be of importance, since antiandrogen therapy could have beneficial effects on immune functions following soft tissue trauma and/or hemorrhagic shock in the clinical situation. The aim of the present study, therefore, was to determine the effects of castration on splenic and peritoneal macrophage function following soft tissue trauma and hemorrhagic shock as indicated by IL-1 and IL-6 release. Furthermore, the release of IL-6 by Kupffer cells was measured. These cells are believed to contribute to the systemic inflammatory response following trauma-hemorrhage through the increased release of IL-6 under those conditions (3, 16).

MATERIALS AND METHODS

Animals

Inbred male C3H/HeN mice (9–11 wk old, 24–26 g body wt; Charles River Laboratories, Portage, MI) were used in this study. All procedures were carried out in accordance with the guidelines set forth in the Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals by the National Institutes of Health. This project was approved by the...
Institutional Animal Care and Use Committee of Brown University and Rhode Island Hospital.

Experimental Groups and Procedures

Mice were subjected to sham-castration or castration at the age of 7 wk, i.e., 2 wk before the initiation of the experiment. The castration procedure was performed as previously described by Waynforth (24). All mice were then randomized into one of four groups. Groups 1 and 2 consisted of castrated animals. Animals in group 1 were sham-operated controls for the trauma-hemorrhage procedure, and the animals in group 2 underwent a combined model of soft tissue trauma and hemorrhagic shock. The animals in groups 3 and 4 were sham-castrated, with the animals in group 3 serving as sham-operated controls and the animals in group 4 undergoing the combined trauma-hemorrhage model. Mice in the trauma-hemorrhage groups were lightly anesthetized with methoxyflurane (Metofane; Pitman-Moore, Mundelein, IL) and restrained in a supine position, and a 2.5-cm midline laparotomy (e.g., trauma-induced) was performed. The abdominal incision was then closed aseptically in two layers using 6-0 Ethilon sutures (Ethicon, Somerville, NJ). After this, both femoral arteries were aseptically cannulated with polyethylene 10 tubing (Clay-Adams, Parsippany, NJ) using a minimal dissection technique. The animals were then heparinized (2 units of lung heparin/25 g body wt; Upjohn Labs, Kalamazoo, MI) and allowed to awaken. Blood pressure was constantly monitored by attaching one of the catheters to a blood pressure analyzer (Digi-Med, Louisville, KY). The areas of incision were then bathed with 1% lidocaine, and the incision was then closed aseptically in two layers using 6-0 Ethilon sutures (Ethicon, Somerville, NJ). The liver was removed en bloc and transferred to a petri dish containing warm enzyme HBSS. The tissue was then minced finely, incubated at 37°C for 15 min, and passed through a sterile 150-mesh stainless steel screen into a beaker containing 10 ml of cold HBSS and 10% FBS (Biologos, Naperville, IL). The cell suspension was centrifuged at 1,200 g for 15 min at 4°C, the supernatant was removed, and the cell pellet was resuspended in HBSS and washed by centrifugation. The cell suspension was then layered over a 16% Metrizamide (Accurate Chemical, Westbury, NY) in HBSS and centrifuged at 3,000 g, 4°C, for 45 min in a preparative ultracentrifuge. This process separates the Kupffer cells (which form a band at the Metrizamide cushion interface) from the remaining parenchymal cells in the pellet. After removal of the nonparenchymal cells from the interface with a Pasteur pipette, the cells were washed twice by centrifugation (800 g, 10 min, 4°C) with HBSS. The pellet was then dispersed and resuspended in Click’s medium containing 10% FBS. The cells were transferred to a petri dish and incubated for 4 h at 37°C (5% CO2). Nonadherent and nonviable cells were then removed by three repeated washings of the dish. This protocol provides adherent cells that are >96% positive by nonspecific esterase staining and that exhibit typical macrophage morphology (3). The capacity of mouse Kupffer cells to produce IL-6 was determined by assaying the supernatants taken from these cells (3 × 106 Kupffer cells·ml−1·well−1) following a 24-h incubation (37°C, 5% CO2) with or without 10 µg LPS/ml Click’s medium with 10% FBS.

Preparation of Splenic Macrophage Culture

The spleens were removed aseptically and placed in separate petri dishes containing cold (4°C) phosphate-buffered saline (PBS) solution. The splenocyte suspension was used to establish a macrophage culture as previously described (18). The splenic macrophage monolayer was stimulated to produce cytokines by incubation with 10 µg LPS (from Escherichia coli 055:B5; Difco Labs, Detroit, MI) per milliliter in Click’s medium with 10% FBS for 48 h at 37°C, 5% CO2, and 90% humidity. At the end of the incubation period, the culture supernatants were removed, divided into aliquots, and stored at −80°C until assayed for IL-1 and IL-6.

Cell Line Maintenance

The IL-1-dependent D10.G4.1 cells (a gift from Dr. Charles Jawer) were maintained as described by Ihle et al. (12). The IL-6-sensitive murine B cell hybridoma (7TD1; a gift from Dr. J. Jacques Van Snick) was maintained as previously described (12).
Assessment of Cytokine Release

IL-1 release by peritoneal and splenic macrophages was determined by adding serial dilutions of the supernatants to D10.G4.1 cells (2 x 10^5 cells/well) in the presence of concanavalin A (2.5 μg/ml; Pharmacia, Piscataway, NJ) as previously described (8). Proliferation of the D10.G4.1 cells was measured by [3H]thymidine incorporation.

The cross-reactivity of the RIA for testosterone was found to be 100%. For other steroids, the cross-reactivity was as follows: 3.40% for 5α-dihydrotestosterone, 2.20% for 5α-androstane-3β,17β-diol, 2.00% for 11-oxotestosterone, 0.95% for 6β-hydroxytestosterone, 0.71% for 5α-androstane-3β,17β-diol, 0.63% for 5β-dihydrotestosterone, 0.56% for androstenedione, 0.20% for epiantosterone, and <0.01% for all other tested steroids (including male and female sex steroids and their metabolites). Testosterone levels of the unknowns were assigned by interpolation against a testosterone standard curve. The lowest detectable level of testosterone in this RIA was 0.025 ng/ml.

Statistical Analysis

The results are means ± SE of each group (n = 6 animals sampled/group). One-way analysis of variance on the rank (for testosterone plasma level) and Student-Newman-Keuls methods were employed to determine the significance of the differences between experimental means. A value of P < 0.05 was considered significant.

RESULTS

Cytokine Release by Peritoneal Macrophages

IL-1. Both sham-operated groups and animals in the trauma-hemorrhage group with prior castration showed comparable levels of peritoneal macrophage IL-1 release, as opposed to significantly depressed IL-1 release in sham-castrated animals after trauma-hemorrhage (~53.8% compared with corresponding shams; P < 0.05; Fig 1A).

IL-6. Peritoneal macrophages from sham-operated animals and castrated mice after trauma-hemorrhage were found to release similar levels of IL-6 (Fig. 1B). Sham-castrated mice showed significant depression of IL-6 release after trauma-hemorrhage (P < 0.05) compared with the corresponding shams (Fig. 1B).

Cytokine Release by Splenic Macrophages

IL-1. Castrated animals after trauma-hemorrhage demonstrated levels of splenic macrophage IL-1 release that were comparable with sham levels (Fig. 2A). Splenic macrophages from sham-castrated mice after trauma-hemorrhage showed significant depression of IL-1 release (~50.9% compared with the corresponding shams; P < 0.05).

IL-6. Sham-operated mice as well as castrated mice after trauma-hemorrhage were found to have similar levels of splenic macrophage IL-6 release (Fig. 2B). Sham-castrated mice after trauma-hemorrhage showed...
significant depression of IL-6 release from splenic macrophages compared with the corresponding sham-operated animals (P < 0.05).

IL-6 Release by Kupffer Cells

Castration of male mice 2 wk before initiation of sham operation or trauma-hemorrhage reduced plasma testosterone to levels undetectable with the RIA used in the present study. Sham-castrated animals, on the other hand, had detectable levels of testosterone, which were not significantly different in sham-operated animals or animals undergoing trauma-hemorrhage (0.51 ± 0.29 and 0.35 ± 0.27 ng/ml, respectively).

DISCUSSION

It has been suggested that the sexual dimorphism of immune function in humans and animals is a result of the effects of gonadal steroid hormones (9). Female immune function during the proestrus and diestrus state has been found to be unchanged or stimulated following adverse circulatory conditions, as opposed to significant depression of immune functions in male mice after hemorrhagic shock (25, 27). In addition, survival in a polymicrobial sepsis model was significantly higher in proestrus female than in male mice (29). Thus it appears that female sex steroids may contribute to this sexual dimorphism. Alternatively, clinical observations and experimental studies also suggest an important suppressive effect of male sex steroids on immune functions (13, 17, 22, 23). Better maintenance of female immunity may, therefore, be in part due to the absence of immunodepressive androgenic hormones rather than the presence of physiological levels of estrogen or progesterone (13). The lack (or low level) of androgens in females also alters the ratio of androgen to estrogen, which is bound to sex hormone/
Kupffer cell depletion before hypotensive shock hemorrhage, studies by O’Neill et al. (16) demonstrated that the augmented Kupffer cell capacity to release IL-6 accounts for the rise in proinflammatory cytokine seen following trauma-hemorrhage. This suggests that the immunological changes observed in the present study were not necessarily due to increased levels of male sex steroids after trauma-hemorrhage but might be due to the presence of normal physiological testosterone levels. We cannot, however, preclude the possibility that testosterone levels could have increased transiently during the hypotensive insult or within the initial hours following shock in the sham-castrated animals, as this period was not assessed.

Although our results support the notion that male sex steroids have immunosuppressive effects following trauma-hemorrhage, the mechanism(s) of androgen deficiency suppression of the immune system is not known (23). Thus it remains to be determined whether the beneficial effects of androgen-deficiency are due to the lack of testosterone interaction with immunocompetent cells or to the indirect effects of missing testosterone at receptor sites in the central nervous system or in other tissues. In addition, the present study cannot exclude the possibility that other hormonal alterations due to castration might also beneficially influence immune functions following trauma-hemorrhage. However, our preliminary studies indicate that administration of flutamide, a testosterone receptor blocker (25 mg/kg body wt sc) following trauma-hemorrhage in normal, i.e., noncastrated animals also appears to restore the depressed immune functions (unpublished observations). This would suggest that testosterone itself is involved in producing immunodepression, since testosterone depletion (by surgical castration) or testosterone receptor blockade prevented the immunodepression following trauma-hemorrhage.

Previous studies have shown that maximal immune suppression occurs within the 24-h period after hemorrhage, following which the immunological functions gradually return to normal over a period of 5–7 days (28). Because macrophage immune function was maintained at 24 h following trauma-hemorrhage by andro-
en gland depletion, it appears likely that normal immunological responses would be maintained at time points beyond those used in this study. The present results, based on the measurement of macrophage immune function, therefore, indicate deleterious effects of male sex steroids on immune function after soft tissue trauma and severe hemorrhage. Short-term treatment with testosterone-blocking agents instead of castration following trauma-hemorrhage could therefore be a useful adjunct for maintaining host immune function under those conditions. Additional studies are, however, needed to demonstrate whether pharmacological testosterone antagonism/depletion following soft tissue trauma and severe hemorrhage with agents such as leuprolide and/or flutamide can provide any beneficial effects on immunity in these situations and by what mechanism they may act on these cells.

This work was supported by National Institute of General Medical Sciences Grant no. GM 37127. A preliminary account of this work was presented at the 77th Annual Meeting of the New England Surgical Society in Duxville Notch, NH, September 29, 1996. Present address of M. W. Wichmann: Ludwig-Maximilians Univ., Klinikum Grashadern, Dept. of Surgery, Marchioninistraße 15, 81377 Munich, Germany.

Address for reprint requests: I. H. Chaudry, Center for Surgical Research, Middle House II, Brown Univ. School of Medicine and Rhode Island Hospital, 593 Eddy St., Providence, RI 02903.

Received 3 February 1997; accepted in final form 27 June 1997.

REFERENCES