Cell Physiology

Role of TRPM2 in cell proliferation and susceptibility to oxidative stress

Shu-jen Chen, Wenyi Zhang, Qin Tong, Kathleen Conrad, Iwona Hirschler-Laszkiewicz, Michael Bayerl, Jason K. Kim, Joseph Y. Cheung, Barbara A. Miller


The transient receptor potential (TRP) channel TRPM2 is an ion channel that modulates cell survival. We report here that full-length (TRPM2-L) and short (TRPM2-S) isoform expression was significantly increased in human neuroblastoma compared with adrenal gland. To differentiate the roles of TRPM2-L and TRPM2-S in cell proliferation and survival, we established neuroblastoma SH-SY5Y cell lines stably expressing either TRPM2 isoform or empty vector. Cells expressing TRPM2-S showed significantly enhanced proliferation, downregulation of phosphatase and tensin homolog (PTEN), and increased protein kinase B (Akt) phosphorylation and cell surface glucose transporter 1 (Glut1) compared with cells expressing TRPM2-L or empty vector. ERK phosphorylation was increased, and forkhead box O 3a (FOXO3a) levels were decreased. Inhibitor studies demonstrated that enhanced proliferation was dependent on phosphatidylinositol 3-kinase/Akt, ERK, and NADPH oxidase activation. On the other hand, TRPM2-S-expressing cells were significantly more susceptible to cell death induced by low H2O2 concentrations (50–100 μM), whereas TRPM2-L-expressing cells were protected. This was associated with a significant increase in FOXO3a, MnSOD (SOD2), and membrane Glut1 in TRPM2-L-expressing cells compared with TRPM2-S expressing cells. We conclude that TRPM2 channels occupy a key role in cell proliferation and survival following oxidative stress in neuroblastoma. Our results suggest that overexpression of TRPM2-S results in increased proliferation through phosphatidylinositol 3-kinase/Akt and ERK pathways, while overexpression of TRPM2-L confers protection against oxidative stress-induced cell death through FOXO3a and SOD. TRPM2 channels may represent a novel future therapeutic target in diseases involving oxidative stress.

  • transient receptor potential channels
  • Akt
  • ERK
  • FOXO3
  • MnSOD
View Full Text