Cell Physiology

Obscurin regulates the organization of myosin into A bands

Aikaterini Kontrogianni-Konstantopoulos, Dawn H. Catino, John C. Strong, William R. Randall, Robert J. Bloch


Obscurin is a giant sarcomeric protein composed of adhesion modules and signaling domains. It surrounds myofibrils at the level of the Z disk and the M line. To study the role of obscurin during myofibrillogenesis, we used adenovirus-mediated gene delivery to overexpress part of its COOH terminus in primary cultures of postnatal day 1 (P1) skeletal myotubes. Examination of the subcellular distribution of a number of sarcomeric proteins revealed that the organization of myosin into A bands was dramatically reduced. Myosin assembled into A bands normally in mock- or control-infected P1 myotubes. Overexpression of the COOH terminus of obscurin did not affect the organization of other sarcomeric markers, including actin, α-actinin, titin, and myomesin. Assembly of myomesin into nascent M lines in treated myotubes suggests that these structures can form independently of A bands. Immunoblot analysis indicated that there was a small (∼20%) but consistent decrease in the amount of myosin expressed in cells infected with the COOH terminus of obscurin. Coimmunoprecipitation experiments in which we used adult skeletal muscle homogenates demonstrated that obscurin exists in a complex with myosin. Thus our findings suggest that the COOH-terminal region of obscurin interacts with sarcomeric myosin and may play a critical role in its ability to assemble into A bands in striated muscle.

  • titin
  • myofibrillogenesis
  • sarcomere
  • M line
  • muscle
View Full Text